Universal Imaging of Full Strain Tensor in 2D Crystals with Third-Harmonic Generation

Jing Liang, Jinhuan Wang, Zhihong Zhang, Yingze Su, Yi Guo, Ruixi Qiao, Peizhao Song, Peng Gao, Yun Zhao, Qingze Jiao, Shiwei Wu, Zhipei Sun, Dapeng Yu, and Kaihui Liu*

Quantitatively mapping and monitoring the strain distribution in 2D materials is essential for their physical understanding and function engineering. Optical characterization methods are always appealing due to unique noninvasion and high-throughput advantages. However, all currently available optical spectroscopic techniques have application limitation, e.g., photoluminescence spectroscopy is for direct-bandgap semiconducting materials, Raman spectroscopy is for ones with Raman-active and strain-sensitive phonon modes, and second-harmonic generation spectroscopy is only for noncentrosymmetric ones. Here, a universal methodology to measure the full strain tensor in any 2D crystalline material by polarization-dependent third-harmonic generation is reported. This technique utilizes the third-order nonlinear optical response being a universal property in 2D crystals and the nonlinear susceptibility has a one-to-one correspondence to strain tensor via a photoelastic tensor. The photoelastic tensor of both a noncentrosymmetric D_{3h} WS$_2$ monolayer and a centrosymmetric D_{3d} WS$_2$ bilayer is successfully determined, and the strain tensor distribution in homogenously strained and randomly strained monolayer WS$_2$ is further mapped. In addition, an atlas of photoelastic tensors to monitor the strain distribution in 2D materials belonging to all 32 crystallographic point groups is provided. This universal characterization on strain tensor should facilitate new functionality designs and accelerate device applications in 2D-materials-based electronic, optoelectronic, and photovoltaic devices.
Fortunately, the rise of nonlinear optical spectroscopy provides easy and fast methods to monitor the strain tensor in 2D materials, as their nonlinear optical response is quite strong even at atomic-layered thickness and their nonlinear optical susceptibility is quantitatively dependent on the crystal lattice structure that directly correlates with the strain tensor.\(^{[17–26]}\) Recently, an in situ, noninvasive and sensitive technique based on second-harmonic generation (SHG) has been reported to monitor the strain tensor in noncentrosymmetric 2D materials.\(^{[27,28]}\) However, SHG process is forbidden in centrosymmetric 2D materials and cannot be applied to most of the important 2D materials, such as graphene or even-layered transition metal dichalcogenides. In fact, there are higher-order nonlinear optical generations in 2D materials and their signal levels are comparable to SHG\(^{[29–41]}\) (it is quite different from bulk materials that the nonlinear signal decreases by orders of magnitude with increasing nonlinear order). Therefore, it is possible to develop new nonlinear optical method to characterize the strain tensor of broader 2D materials than SHG as different-order nonlinear optical processes have different lattice symmetric requirement.

In this work, we report a universal methodology to measure the strain tensor in 2D materials of all kinds of lattice symmetry by polarization-dependent third-harmonic generation (THG). This technique utilizes two distinctive characteristics of third-order nonlinear optical susceptibility, i.e., it is a universal parameter in any 2D crystal different from the second-order nonlinear optical susceptibility, and the susceptibility element is linearly correlated with the strain tensor via a six-rank photoelastic tensor, enabling a simple and direct method for strain measurement. As representative examples, we applied this technique to determine the photoelastic tensor parameters of both noncentrosymmetric (monolayer tungsten disulfide, WS\(_2\)) and centrosymmetric 2D material (2H-stacked bilayer WS\(_2\)) by their polarization-dependent THG pattern evolution under a series of uniaxial tensile strain. In addition, the full strain tensor mapping is successfully realized in the deformed monolayer WS\(_2\) by solving the strain-tensor-dependent susceptibility equation. We further provide an atlas of photoelastic tensor to describe the strain-tensor-dependent THG intensity for 2D materials belonging to all 32 crystallographic point groups. This full characterization on strain tensor should facilitate new designs and applications in the future electronic, optoelectronic, and photovoltaic devices that are based on a large range of 2D materials with different lattice symmetries.

THG is a third-order nonlinear optical process in which three photons with the frequency \(\omega\) are combined to generate one photon with tripled frequency of \(3\omega\) after interacting with a nonlinear material (Figure 1a). In our experiment, under excitation of a linearly polarized ultrafast laser (1288 nm, 100 fs),
both of the SHG (644 nm) and THG (429 nm) signals from exfoliated few-layered WS$_2$ flakes could be collected (Figure 1b). The layer number of WS$_2$ flakes was verified by both optical and atomic force microscopy images (Figure S1, Supporting Information). As expected, the SHG in centrosymmetric even-layered WS$_2$ (two or four layers) vanishes to nearly zero. While, the THG in both odd- and even-layered WS$_2$ (one to four layers) is obviously strong, originating from the fact that the third-order nonlinear optical process is the most universal and intrinsic nonlinear response of any 2D crystal without symmetric constraint. These comparison results confirm that THG has the potential to be a general method to measure the strain in 2D materials.

To verify the feasibility in monitoring the strain by THG, the optical spectra from monolayer WS$_2$ flakes under a series of uniaxial tensile strain were collected (Figure 1c). In the experiment, the chemical vapor deposition (CVD) grown atomic-layered WS$_2$ flakes were transferred on the flexible Acrylic substrate (see the Experimental Section for details). The layer number of WS$_2$ flakes was verified by both optical images and Raman/PL spectroscopy (Figure S2a,b, Supporting Information).[16,42] The uniaxial tensile strain was applied to WS$_2$ by bending the flexible Acrylic substrate (Figure 1a). The magnitude of strain could be directly calculated by the geometric construction ($\varepsilon = \tau/2\rho$, $\tau = 0.5$ mm is the substrate thickness, and ρ is the curvature radius of the neutral plane) or the red-shift of PL peak position (Figure S2c, Supporting Information, $\Delta E/\varepsilon = -0.65/\%$, E_0 and E_ε respectively, stand for the PL peak energy with and without strain) under the same strain. The high strain sensitivity provides the foundation of THG to serve as an effective method to measure the strain tensor. In the following experiment, monolayer (D_{3h}) and 2H-stacked bilayer WS$_2$ (D_{3d}) were chosen as representative examples to illustrate the universality of THG method in determining strain tensor in both noncentrosymmetric and centrosymmetric material systems.

In this experiment, we carried out polarization-dependent THG measurement and monitor the pattern evolution in noncentrosymmetric monolayer WS$_2$ under a series of uniaxial tensile strain (Figure 2). The incident laser is polarized and the generated THG with polarization parallel (I_\parallel) and perpendicular (I_\perp) to the incident polarization was measured. The intrinsic THG response of strain-free monolayer WS$_2$ is independent of incident polarization θ: $I_\parallel = I_\perp = I_0$, consistent with the symmetry analysis of the third-order nonlinear susceptibility in D_{3h} materials (Note S1, Supporting Information).

Figure 2. Polarization-dependent THG pattern evolution of monolayer WS$_2$ under uniaxial tensile strain. a) Optical images of monolayer WS$_2$ and the corresponding crystal lattice structure by a ball-stick model. The uniaxial tensile strain ε_{xx} is fixed along horizontal direction with a relative angle ($\varphi = 0^\circ$) to the armchair direction of WS$_2$. b,c) θ-dependent parallel (I_\parallel) (b) or perpendicular (I_\perp) (c) component of THG from the monolayer WS$_2$ in (a) under a series of uniaxial tensile strains. θ is the laser polarization from the horizontal direction. Dots are original data and lines are theoretical fits. The orange, dark yellow, violet, and dark cyan colors represent strain magnitudes of 0%, 0.48%, 0.72%, and 0.90%, respectively. d–f) THG response of another monolayer WS$_2$ with a general relative angle ($\varphi = 16^\circ$) to the armchair direction of WS$_2$. All other experimental conditions are the same as in (a–c).
Meanwhile, the THG pattern under strain shows obvious strain-tensor dependence. When the uniaxial tensile strain is along WS2 armchair direction (Figure 2a, $\varphi = 0^\circ$, φ is the angle of horizontal strain direction from WS2 armchair direction), the I_{\parallel} intensity decreases (increases) gradually with increasing strain magnitude. The I_{\parallel} pattern evolves into symmetric dumbbell pattern (Figure 2b) and I_{\perp} stretches out to four equal-sized petals (Figure 2c). When the uniaxial tensile strain is along a general WS2 lattice direction (Figure 2d, $\varphi = 16^\circ$), the I_{\parallel} pattern evolves into asymmetric dumbbell pattern (Figure 2e) and I_{\perp} stretches out to four asymmetry petals as well (Figure 2f). The qualitative understanding on the relation between THG pattern and the strain can be obtained from the symmetric evaluation. Uniaxial tensile strain breaks the threefold rotational symmetry of WS2 lattice and leads to the anisotropic I_{\parallel} and I_{\perp} pattern evolution. In addition, the strain direction has a direct correspondence with the major axis of I_{\parallel}. The special $\varphi = 0^\circ$ (general $\varphi = 16^\circ$) strain conserves (breaks) the mirror plane normal to armchair direction and results in mirror-symmetric (asymmetric) I_{\parallel} and I_{\perp} patterns. Therefore, the distortion of I_{\parallel} and I_{\perp} pattern directly denotes the strain orientation from the WS2 armchair direction. The detailed pattern evolution feature contains the information of both strain amplitude and direction, and the quantitative description on the relation between THG pattern and strain tensor will be given in the latter theoretical section.

To demonstrate the universality of THG to monitor strain tensor, we investigated the polarization-dependent THG pattern evolution in centrosymmetric 2H-stacked bilayer WS2 flakes under a series of uniaxial tensile strain (Figure 3). It is worth noting that PL and SHG methods are challenging to measure the strain in the 2H-stacked WS2 flakes due to their extremely weak PL and forbidden SHG. Our THG imaging results are shown in Figure 3. In strain-free case, 2H-stacked bilayer WS2 gives the same isotropic THG patterns as monolayer due to maintained threefold rotational symmetry. While the THG intensity is roughly quadrupled because the depletion of the fundamental light and the phase mismatch could be ignored in the THG process in few-layered 2D configuration and the THG intensity is only determined by the thickness of 2D materials. Under uniaxial strain (Figure 3a, $\varphi = 24^\circ$), I_{\parallel} shrinks into a parallelogram (Figure 3b) and I_{\perp} stretches out to asymmetric four petals (Figure 3c).

The THG pattern evolution under strain is similar to that in monolayer WS2 due to the same symmetry breaking of threefold rotation symmetry and mirror symmetry along armchair direction. But the ellipticity of I_{\parallel} pattern is smaller than that in monolayer case because the nonlinear susceptibility of bilayer WS2 has a relative lower strain sensitivity. Nevertheless, here we demonstrate the advantage of using THG for strain measurement in centrosymmetric 2H-stacked bilayer WS2 which is challenging to achieve with SHG due to that SHG is forbidden in these materials with inversion symmetry. The detailed pattern evolution description in 2H-stacked bilayer WS2 will be given in the below theoretical part.

Polarization-dependent THG carries the information of lattice symmetry by the third-order nonlinear susceptibility tensor χ(3)\textsubscript{ij}. Strain deforms the crystal lattice, breaks the crystal symmetry, changes χ(3)\textsubscript{ij}, and eventually determines the polarization-dependent THG pattern. The strain regulation on the polarization-dependent THG pattern is determined by the linear response of χ(3)\textsubscript{ij} to the strain tensor $u_{\alpha\beta}$ in the form of

$$\chi^{(3)}_{ij} = \chi_{ij}^{(3,0)} + p_{ijklmn}u_{\alpha\beta}$$

where p_{ijklmn} is a sixth-rank photoelastic tensor, $\chi_{ij}^{(3,0)}$ and $\chi_{ij}^{(3)}$ are, respectively, the third-order nonlinear susceptibility under strain-free and strain conditions. $u_{\alpha\beta}$ has different representations in different coordinate systems. Here, we choose the principal strain coordinates (x, y), in which shear components vanish

$$u_{\alpha\beta} = \begin{pmatrix} 0 & e_{yy} - ve_{xx} & 0 \\ 0 & e_{xx} - ve_{yy} & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Here v is the Poisson’s ratio of a crystal, x and y denotes the e_{xx} and e_{yy} orientation and x-axis has an angle α from the horizontal direction. Equation (1) can be expressed in the lab coordinates (X, Y) by strain transformation formula, where X and Y stand for horizontal and vertical direction, respectively (Note S2, Supporting Information).

Considering the symmetry of third-order nonlinear susceptibility in THG process, the symmetry of strain tensor, and point-group-dependent symmetry operations, the photoelastic tensor p_{ijklmn} could be represented compactly by several irrelevant

![Figure 3](https://www.advmat.de)
In 2D configuration, every index in p_{ijklmn} has two degrees of freedom: a and b (armchair and zigzag direction of WS$_2$). $k_1, k_2, k_3,$ and k_4 are four photoelastic tensor parameters, which determine the photoelastic tensor p_{ijklmn}.

Table 1. Photoelastic tensor p_{ijklmn} of WS$_2$ (D_{3h} or D_{3d}).

<table>
<thead>
<tr>
<th>i</th>
<th>$jklmn$</th>
<th>aaa</th>
<th>$aab/aba/baa$</th>
<th>$abb/bab/bba$</th>
<th>bbb</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>aa</td>
<td>$-k_1 + 3k_2 + 3k_3 + 3k_4$</td>
<td>0</td>
<td>k_4</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>ab/ba</td>
<td>0</td>
<td>$-k_1 - 3k_2 - 3k_3 + 3k_4$</td>
<td>0</td>
<td>$-3k_1 + 3k_2 - 3k_3 + k_4$</td>
</tr>
<tr>
<td></td>
<td>bb</td>
<td>k_1</td>
<td>0</td>
<td>k_2</td>
<td>0</td>
</tr>
<tr>
<td>b</td>
<td>aa</td>
<td>0</td>
<td>$k_1 + 3k_2 + 3k_3 - k_4$</td>
<td>0</td>
<td>$3k_1 + 3k_2 + 3k_3 - 3k_4$</td>
</tr>
<tr>
<td></td>
<td>ab/ba</td>
<td>$-k_1 + 3k_2 - 9k_3 + 3k_4$</td>
<td>0</td>
<td>$-3k_1 + 3k_2 + 3k_3 + k_4$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>bb</td>
<td>0</td>
<td>k_2</td>
<td>0</td>
<td>k_3</td>
</tr>
</tbody>
</table>

In 2D configuration, every index in p_{ijklmn} has two degrees of freedom: a and b (armchair and zigzag direction of WS$_2$). $k_1, k_2, k_3,$ and k_4 are four photoelastic tensor parameters, which determine the photoelastic tensor p_{ijklmn}.

The THG pattern fitting (Figure 4b). A strain tensor map is then recorded and the resulting principal strain tensors described by ε_{xx} and ε_{yy} are plotted as vectors in Figure 4c,d, respectively. The uniform magnitude of ε_{xx} $(0.72 \pm 0.05\%$) as well as nearly zero ε_{yy} and α denotes the presence of uniaxial strain along the horizontal direction.

Further, we demonstrate its application on mapping the inhomogenous strain tensor distribution in monolayer WS$_2$ membrane which is naturally formed during the rapid drying process after the transfer process (Figure 4e). The strain tensor at a point marked in Figure 4e was determined to be $(0.30\%, 0.01\%, 20^\circ)$ (Figure 4f). The full strain tensor field is mapped...
(Figure 4g,h) and we conclude that only tensile strain is present in this monolayer WS₂ film since all strain values are positive, which is consistent with the fact that the membrane spreads smoothly on the substrate without wrinkles. We also successfully measure the inhomogeneous strain tensor distribution of a WS₂ monolayer membrane suspended on a transmission electron microscopy hole grid (Figure S3, Supporting Information).

In our experiment, we demonstrate the application of polarization-dependent THG to monitor the full strain tensor in centrosymmetric D_{3h} and noncentrosymmetric D_{3d} crystal materials. The THG-based strain tensor measurement still functions well regardless of the doping level of the 2D materials (Figures S4 and S5, Supporting Information), and it has higher spatial resolution compared to SHG due to higher-order excitation power dependence. Most importantly, the THG-based strain tensor measurement is in principle applicable to all 2D crystal materials of any kind of crystallographic point groups. We tested the strain-induced THG pattern evolution in another material of monolayer MoS₂ and the method works well (Figure S6, Supporting Information).

In summary, we report a universal methodology based on polarization-dependent THG to image strain tensor distribution in 2D crystalline materials. The universality of the method is verified by the strain measurement in both noncentrosymmetric monolayer and centrosymmetric 2H-stacked bilayer WS₂. On the basis of experimental results and theoretical analysis, we extract the numerical value of photoelastic tensor parameters which quantitatively describes the strain regulation on the third-order nonlinear susceptibility. With such photoelastic tensor parameters, one can conveniently determine the strain distribution from the polarization-dependent THG pattern. Our methodology expands the application of third-order nonlinear process of THG to strain tensor characterization and should promote new functionality designs and accelerate device applications in 2D materials–based electronic, optoelectronic, and photovoltaic devices. Without the constraint of crystal symmetry, the THG methodology is in principle applicable to any 2D crystalline materials.

Experimental Section

Growth of Monolayer and Bilayer WS₂: WS₂ on SiO₂/Si substrate was grown by CVD method by using WO₃ and S powder as precursors. WO₃ powder (10.0 mg) and NaCl powder (1.5 mg) was placed in quartz boat at the center of the tube furnace. S powder (30.0 mg) was placed on the upstream side while the substrate was upon the quartz boat at the downstream side. The growth was performed under ambient pressure Ar gas. The procedure was as follows: kept at 105 °C with 500 sccm Ar...
flow for 1 h, ramped to 800 °C with 15 sccm Ar flow in 50 min, kept at 800 °C with 250 sccm Ar flow for 10 min, and then naturally cooled down to room temperature.

Sample Preparation on Flexible Substrate: 9% poly(methyl methacrylate) (PMMA), 950 K) in anisole solution was spin-coated onto SiO2/Si substrates with WS2 flakes and baked at 180 °C for 2 min. Then the sample was immersed into KOH solution (0.1 M) at 80 °C for 5 min. After being lifted off from the original substrate, the PMMA/WS2 flakes were thoroughly washed with deionized water and then transferred to the target flexible Acrylic substrate. The PMMA/WS2/Acrylic was dried and baked at 60 °C for 10 min to ensure the strong interaction between WS2 and Acrylic.

Optical Characterization of WS2: Microscopy images of WS2 flakes on Acrylic were taken by Olympus microscope (Olympus BX51). PL and Raman spectra are probed by home-built confocal microscope system with laser excitation wavelength of 532 nm and average power of 200 µW.

Experimental THG Setup: Femtosecond pulses (~100 fs, 80 MHz) at 1288 nm were generated by a Ti:sapphire oscillator (Spectra-Physics Mai Tai laser) equipped with an optical parametric oscillator. The excitation beam was normally incident and its linear polarization was controlled by a half-wave plate in front of the objective (40X, N.A. = 0.65). In reflection geometry, a linear analyzer parallel (perpendicular) to the incident polarization was utilized to extract the parallel (perpendicular) component I_{\parallel} (I_{\perp}) of THG from the sample. The signal was recorded by a grating spectrograph with CCD (Princeton SP-2500i).

Supporting Information

Supporting Information is available from the Wiley Online Library or from the author.

Acknowledgements

This work was supported by National Key R&D Program of China (2016YFA0300903 and 2016YFA0300804), NSFC (51522001 and 11474006), National Equipment Program of China (ZDYZ2015-1), Beijing Graphene Innovation Program (Z161100002116028), Science, Technology and Innovation Commission of Shenzhen Municipality (ZDSYS2017030315926217 and JCYJ20170412152620376), Guangdong Innovative and Entrepreneurial Research Team Program (2016ZT06D348), and the National Program for Thousand Young Talents of China.

Conflict of Interest

The authors declare no conflict of interest.

Keywords

2D materials, photoelastic tensor, strain tensor characterization, third-harmonic generation

Received: December 19, 2018
Revised: March 2, 2019
Published online:

