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Recent studies in van der Waals coupled two-dimensional (2D) bilayer materials have demonstrated a new freedom
for material engineering by the formation of moiré pattern. By tuning the twist angle between two layers, one can modulate
their electronic band structures and therefore the associated electrical transport and optical properties, which are distinct
from the original ones of each individual layer. These new properties excite great passion in the exploration of new quantum
states and possible applications of 2D bilayers. In this article, we will mainly review the prevailing fabrication methods and
emerging physical properties of twisted bilayer materials and lastly give out a perspective of this topic.
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1. Introduction

The concept of 2D materials is prevailing accompanied
with the discovery of graphene,[1,2] which opens up a new
field of material science. 2D materials have many unique
physical properties, such as the Dirac cone band structure of
monolayer graphene, valley-selective polarized light absorp-
tion of transition metal dichalcogenide (TMD), great insula-
tion of hexagonal boron nitride (hBN), and so on.[3–5] Bene-
fitting from the abundance of 2D monolayers, the heterostruc-
tures, built by different layer stacking, form a new big fam-
ily. In sharp contrast to conventional bulk materials, lack of
dangling bonds at the surface greatly facilitates the building
of heterostructures without further consideration of the lattice
mismatch. When one layer is stacked on another forming bi-
layer, their different lattice vectors can lead to the formation
of superlattice, and the electrons in the system will feel an
additional potential called moiré periodic potential (Fig. 1).
Also, surface-exposed electronic states and quantum confine-
ment significantly enhance the interlayer electronic coupling.
The moiré periodic potential and enhanced electronic coupling
not only tune the intrinsic behavior of the component layers,
but also bring many novel physical properties appearing at the
interface such as Mott-insulator state, unconventional super-
conductivity, and moiré excitons.[6–11] Furthermore, these two
mechanisms bring us a new approach to engineering the prop-
erties of 2D bilayer materials by tuning the interfacial twist
angle. With interfacial twist angle tuning, real-space rotation
introduces the evolution of moiré pattern and moiré periodic

potential, reciprocal-space rotation introduces band alignment
change and finally tunes the interlayer coupling.

AA ( ) AB ( )Twsit ( )

(a) (b) (c)

(d) (e)

Fig. 1. Moiré patterns and enhanced interlayer coupling in 2D twisted bi-
layer materials. (a)–(c) Configurations of AA stacking/twisted/AB stacking
hexagonal lattice bilayers. (d) Schematics of moiré patterns of 5◦ twisted
bilayer graphene. (e) Schematics of interlayer couping in 2D twisted bilayer
materials.

In this review, we discuss the topic of the 2D twisted bi-
layer materials, particularly concentrating on how the twist an-
gle determines the physical properties. First, we summarize
different methods to fabricate twisted bilayers under different
conditions. Then, three typical material systems are discussed:
twisted bilayer graphene, graphene/hBN heterostructures, and
TMD bilayers. At last, we give our perspectives on the study
and applications of 2D twisted bilayer materials.
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2. Fabrication of 2D twisted bilayer materials
Fabrication is the first and most fundamental step in ma-

terial science research. Mainly two challenges exist in the fab-
rication process of 2D twisted bilayer materials: accurately
controlling interfacial twist angle and building clean interface.
Generally, if we do not care much about the accuracy of the
twist angle, crude methods can satisfy our demands. Common
wet transfer or dry transfer method can be used to fabricate
twisted bilayer, where polymer is used to pick up one layer
from its substrate and stack the layer on another. However,
in this way the interface is not clean enough.[12–15] As shown
in Fig. 2(a), direct chemical vapor deposition (CVD) method
can also be used to grow TMD bilayers with different twist
angles.[16] In this process, twisted bilayer (non 0◦/60◦ twist
angle) is a by-product of high-symmetry-stacking heterostruc-
tures. The value of the twist angle can be obtained directly
according to their relative geometry. Although CVD method
can guarantee the clean interface, it gives random twist an-
gle which is uncontrollable. Figure 2(b) illustrates the process
used to fabricate magic-angle twisted bilayer graphene.[17]

The maximum magic angle is less than 1.1◦,[18] so the fab-
rication process must be more delicate. The so-called ‘tear &
stack’ technique, first proposed by Kim et al.,[19] is essentially
a modified dry transfer method used for twist angle control.

Independently, utilizing the strong van der Waals interaction
between hBN and graphene, Cao et al. tore half of one piece
of monolayer graphene vertically from the substrate, and then
rotated the substrate by the largest magic angle with an accu-
racy of about 0.1◦. At last they stacked the first half on the
remaining monolayer to form twisted bilayer and picked it up
from the substrate. In this process, hBN was used instead of
polymer to obtain a cleaner interface compared to common dry
transfer method.[20]

In contrast to the methods mentioned above, twisted
graphene/hBN heterostructures can be fabricated in other ways
as reported, and such methods allow one to regulate the twist
angle after fabrication. As shown in Fig. 2(c), utilizing the
weak friction between hBN and graphene, atomic force micro-
scope (AFM) tip can be used to control the twist angle of the
heterostructures mechanically.[21,22] In this process, graphene
is placed on top of hBN with a large twist angle to avoid distur-
bance. Then the graphene layer is etched into a Hall bar with
oxygen plasma for electronic measurements, and a preshaped
hBN flake is transferred onto the graphene. Thus AFM tip can
rotate the preshaped flake to control the twist angles after fab-
rication. In addition, utilizing the potential difference among
heterostructures with different twist angles, thermal annealing
is also adopted as shown in Fig. 2(d).[21,23]

(a) (b)

(c) (d)

Fig. 2. Fabrication methods. (a) Top: illustration of CVD growth of vertical WS2/MoS2 bilayers. Bottom: schematic illustration, optical
image, and scanning electron microscopy image of vertical WS2/MoS2 bilayers. Reprinted with permission from Ref. [16]. Copyright
2016, Nature Publishing Group. (b) Schematic illustration of ‘tear & stack’ technique, which is essentially a modified dry transfer method
to fabricate clean interface with accurate twist angle. Reprinted with permission from Ref. [17]. Copyright 2016, American Physical Soci-
ety. (c) Schematic illustration and AFM images of the twist-angle-tunable graphene/hBN heterostructures. Reprinted with permission from
Ref. [22]. Copyright 2018, American Association for the Advancement of Science. (d) Top: AFM images of graphene/hBN heterostruc-
tures before (left) and after (right) annealing. Bottom: AFM images of graphene/hBN heterostructures. They are obtained initially (left),
after AFM tip control (middle), and after long-time annealing (right), respectively. Reprinted with permission from Ref. [23]. Copyright
2016, Nature Publishing Group. Reprinted with permission from Ref. [21]. Copyright 2016, American Physical Society.
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3. Physical properties of 2D twisted bilayer ma-
terials

3.1. Twisted bilayer graphene

Monolayer graphene is a 2D Dirac semimetal with many
unique properties, such as massless Dirac fermion, high car-
rier mobility, and wide-spectrum light absorption compared to
the conventional materials.[24] As for common intrinsic Bernal
stacked bilayer graphene (AB stacking), the bandgap remains
zero while the fermion becomes massive.[3] However, when
taking the twist angle into consideration, new physical phe-
nomena have been found and investigated in twisted bilayer
graphene.

3.1.1. New van Hove singularities

As shown in Fig. 3(a), it has been reported that within a
broad range (from 1◦ to 10◦) of twist angles, two robust new
van Hove singularities arise owing to the hybridization of the
energy bands of these two layers.[25–27] The energy level of

the two van Hove singularities can be obtained by scanning
tunneling spectroscopy (STS), while the experimental results
of the energy separation between them (∆E) accord with the
theoretical prediction (based on the continuum model)[28,29]

∆E = 2}vFΓ K sin
θ

2
−2tθ , (1)

where vF is the Fermi velocity of monolayer graphene, Γ K
is the wave vector of the Dirac point in reciprocal space of
graphene, θ is the twist angle, and tθ is the amplitude of the
main Fourier component of the interlayer potential. The ef-
fect of such band structure can also be observed in optical
spectroscopy, like absorption spectra, angle-resolved Raman
imaging, and angle-tunable photoluminescence with resonant
2-photon excitation.[30–33] The van Hove singularity boosts the
density of states of materials, and thus provides a strong light–
matter interaction in twisted bilayer graphene. It has been re-
ported that twisted bilayer graphene can enhance the signal in
ultrafast photodetection utilizing this property.[34]

(a) (b)

(c)

Fig. 3. Physical properties of twisted bilayer graphene. (a) Schematic illustration and STS results of the new van Hove singularities of
twisted bilayer graphene. The interlayer interaction leads to the formation of van Hove singularities, and they correspond to the two peaks
in STS measurements. The relation between the singularity energy separation and the twist angle is also shown. Reprinted with permission
from Ref. [27]. Copyright 2012, American Physical Society. (b) Left, calculated band structure and density of states of twisted bilayer
graphene with twist angle θ = 1.05◦. Top right, two-probe longitudinal conductance results of twisted bilayer graphene with twist angle
θ = 1.16◦. Insulating states have been marked by background color. Bottom right, four-probe longitudinal resistance results of two twisted
bilayer graphene samples with twist angles θ = 1.05◦ and θ = 1.16◦. Reprinted with permission from Ref. [7]. Copyright 2018, Nature
Publishing Group. (c) Left: illustration of quasicrystal twisted bilayer graphene. Top right: ARPES results of quasicrystal twisted bilayer
graphene. Bottom right: illustration of Umklapp scattering process, which is responsible for the extra scattering points in the ARPES. Reprinted
with permission from Ref. [51]. Copyright 2018, American Association for the Advancement of Science.
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3.1.2. Magic angle and flat band

In 2010, Morell et al. predicted the occurrence of flat
bands (simultaneously, zero Fermi velocity at Dirac point)
in twisted bilayer graphene using tight-binding calculations,
which probably means the existence of strong electron–
electron interaction.[35] In 2011, Bistritzer et al. solved the
continuum Dirac model for twisted bilayer graphene and also
found a flat band for a series of the so-called magic angles,[18]

which was partly (only for the largest twist angle) convinced in
2015 using STS by Yin et al.[36] Later, Cao et al. successfully
realized the material system and made various electrical mea-
surements on it.[6,7] At first, they found that the conductance
of twisted bilayer graphene becomes zero with the moiré band
half-filled and attributed this to the formation of a Mott insu-
lator, which can be explained in rough as the consequence of
the split of the moiré band caused by the repulsion of the two
electrons in the same orbital state with different spins (Hub-
bard model).[37,38] Then they made more careful measure-
ments (four-probe resistance Rxx) and observed an unconven-
tional superconducting state whose doping density is slightly
away from the lower Mott-insulator state (Fermi level EF < 0)
with the critical temperature below 1.7 K. The band structure,
the two-probe conductance results, and the four-probe resis-
tance results are shown in Fig. 3(c). As they have pointed
out, such tunable system offers a brand-new platform to study
unconventional superconductivity, which has attracted many
researchers to do related work on it (e.g., a superconducting
state is also observed at a twist angle slightly larger than 1.1◦

under higher pressure).[39–48]

3.1.3. Graphene quasicrystal

The twist angles mentioned above are mostly small an-
gles. As for large twist angles, the interaction between two
layers is usually weak.[49,50] Ahn et al. fabricated twisted bi-
layer graphene with a twist angle of exactly 30◦, which forms
a graphene quasicrystal with dodecagonal quasicrystalline or-
der and anomalous interlayer interaction is found by angle-
resolved photoemission spectra of the system.[51] Extra scat-
tering points owing to Umklapp scattering process of the two
layers are shown in Fig. 3(b). Yao et al. have also reported
successful growth of such graphene quasicrystal and investi-
gated the emergence of mirrored Dirac cones.[52] They iden-
tified that these mirrored Dirac cones are a consequence of
the interlayer interaction showing its importance in the incom-
mensurate structure which had been overlooked before.

3.1.4. Other emerging properties

In addition to the band structure of electrons, electron–
phonon coupling is also a fundamental interaction that affects
a broad range of phenomena in condensed matter physics,
such as electron mobility, and is responsible for conventional
superconductivity.[53] In multilayer structures, the interaction
can involve intralayer electron–phonon interaction or inter-
layer electron–phonon interaction (Figs. 4(a) and 4(b)). Eliel
et al. reported the ability of Raman spectroscopy to probe and
distinguish interlayer and intralayer interactions in graphene-

(a)

(b)

(c) (d)

(e)

(g)

(f)

Fig. 4. Electron–phonon coupling and atomic reconstruction in 2D twisted bilayer materials. (a) and (b) Schematics of interlayer electron–
phonon process where a phonon with momentum h̄q1 connects the states k and k′ of different layer (a) and intralayer electron–phonon
process where both states k and k′ are from the same layer. (c) and (d) Raman spectra of twisted bilayer graphene with θ = 6◦ and 13◦

measured with the 2.18 eV and 2.41 eV laser lines, respectively. The vertical coordinate corresponds to the ratio of the peak intensities
of the Raman spectra in twisted bilayer graphene and monolayer graphene. (c) The peak around 1620 cm−1 is called La and stems from
intralayer electron–phonon scattering process and (d) the peak at 1480 cm−1 is called Te and stems from the interlayer electron–phonon
scattering process. (e) and (f) Excitation Raman maps of twisted bilayer graphene with θ = 6◦ (e) and 13◦ (f) measured under different
laser energy excitations. Reprinted with permission from Ref. [54]. Copyright 2019, Nature Publishing Group. (g) TEM dark-field images
of twisted bilayer graphene with different twist angles obtained by selecting diffraction peak (g = 101̄0). Different contrast stands for
different stacking order (AB/BA). Reprinted with permission from Ref. [45]. Copyright 2019, Nature Publishing Group.
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based heterostructures.[54] As shown in Figs. 4(c) and 4(d),
they measured Raman spectra in two samples of twisted bi-
layer graphene with twist angles θ = 6◦ and 13◦ recorded with
the 2.18 eV and 2.41 eV laser lines, respectively. The frequen-
cies of these phonons depend on the twisting angle θ .[55–63] In
addition, they made multiple-excitation Raman measurements
using multiple laser lines and found that the results show dif-
ferent dependence on the incident photon energy (Figs. 4(e)
and 4(f)). Bilayer graphene and graphene/hBN samples with
different twist angles also show similar results.

The theoretical results of twisted bilayer graphene men-
tioned above are all based on a common assumption that the
lattice structure of either layer does not change significantly
despite the interlayer interaction. However, Yoo et al. reported
that this is not the case.[45] In Fig. 4(g), the transmission elec-
tron microscope (TEM) dark-field images are obtained by se-
lecting the diffraction peak from a series of twisted bilayer
graphene samples with multiple twist angles. In these im-
ages, different contrasts stand for totally different stacking or-
der (AB/BA) domains, and for the twisted bilayer graphene
sample with 0.1◦ twist angle, the sharp boundaries indicate
the existence of atomic reconstruction, in contrast to the rela-

tively continuous distribution of stacking order if not recon-
structed. As the twist angle increases, the boundaries be-
come blurry, which represents the weakening of interlayer in-
teraction. Based on this discovery, they recalculated the band
structure of twisted bilayer graphene with small twist angles
and found that a simple moiré band description breaks down
and the secondary Dirac bands appear when the twist angle
θ < θc (θc ≈ 1◦).

3.2. Graphene/hBN heterostructures

The study of graphene/hBN heterostructures became pop-
ular after Dean et al. pointed out that hBN can be an appeal-
ing substrate for graphene, fairly avoiding various factors
which will decrease the quality of graphene in contrast to the
standard SiO2 substrate.[64] The experimental results indicate
that the coupling between graphene and hBN is generally
weak for the band structure of graphene. In 2013, several
papers were published discussing the transport properties of
graphene/hBN heterostructures, and they particularly con-
centrated on the so-called Hofstadter butterfly[65] induced by
the moiré periodic potential and an external magnetic field,
as shown in Fig. 5(a).[66–68] However, despite the crucial role

(a)

(b)

Fig. 5. Physical properties of graphene/hBN heterostructures. (a) Left, normalized Hofstadter butterfly spectrum for square lattice in a
magnetic field. Middle, density-field diagrams of such system. Colored lines stand for constant chemical potential for both two above.
Right, transport measurement results of graphene/hBN heterostructures. The slope of each line has been marked in the figure. Reprinted
with permission from Ref. [68]. Copyright 2013, Nature Publishing Group. (b) Top left, four-probe resistance as a function of gate voltage
(Vg) results. A satellite peak locates away from charge neutrality point and indicates an extra energy gap. Bottom left, energy gap as a
function of twist angle. Top middle, satellite peak position as a function of twist angle. Bottom middle, illustration of energy gap. Right,
four-probe resistance (R4P), tip deflection (reflection of friction force), and full width at half maximum of the 2D peak (FWHM2D) in
Raman spectroscopy as a function of twist angle at a carrier density of −1.9×1012 cm−2. Reprinted with permission from Ref. [22].
Copyright 2018, Nature Publishing Group.
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which moiré pattern plays in the realization of the Hofstadter
butterfly, the twist angle, an important factor to tune the moiré
periodic potential was not introduced then. This can be at-
tributed to the reasons below. Firstly, the realization of the
Hofstadter butterfly demands a large periodicity, and thus the
twist angle cannot be larger than 2◦ for graphene/hBN het-
erostructures. Most importantly, the method to precisely reg-
ulate the twist angle after fabrication had not been proposed
then. In 2016, AFM tip was introduced and thus the proper-
ties of the heterostructures with respect to the twist angle were
studied, as shown in Fig. 5(b) (the fabrication method has been
illustrated in Fig. 2(d)).[22] In their experiments, large twist an-
gles exhibit weak coupling between layers accounting for the
so-called superlubricity which has also been investigated in
other 2D systems,[69–72] while for small twist angles, the inter-
layer interaction opens a small bandgap at the doping density
where locates the satellite peak of the longitudinal resistance.
The satellite peak has been reported before as the consequence
of the moiré potential, and thus the bandgap significantly de-
pends on the twist angle. In addition, the Raman intensity of
the 2D peak, and mechanical properties measured by the AFM
tip exhibit similar dependence on the twist angle as well. De-
spite all this, further investigations are still demanded to ex-
plain these experimental results.

3.3. TMD bilayers

After the discovery of graphene, the appearance of TMD
materials markedly broadens the 2D materials with diverse

physical properties.[73–76] Most TMD materials are semicon-
ductors whose bandgaps cover the range from near-infrared to
visible region with strong light–matter interaction, the degen-
erate exciton transitions at the K and K′ valleys in the momen-
tum space with broken inversion symmetry in TMD materials
offer a new platform for exploring spin and valley physics,
TMD materials have several phases which can be tuned by
electric field, pressure, or light.[77–79]

3.3.1. Electronic and mechanical coupling in twisted
MoS2 bilayer

Liu et al. investigated photoluminescence and Raman
spectra of 44 MoS2 bilayers with different twist angles
(Figs. 6(a) and 6(b)).[80] They reported that the A exciton
recombination photoluminescence peak position (peak I in
Fig. 6(c)) remains the same for all bilayers with different
twist angles, but photoluminescence intensity decreases sig-
nificantly compared with the monolayer one. For the bilayer
case, a lower-energy peak appears (peak II in Fig. 6(c)), which
corresponds to an indirect bandgap recombination resulting
from the interlayer electronic coupling. They found that the
indirect bandgap varies with twist angle. AA/AB stacking bi-
layers have smaller bandgap than that of twist ones, indicating
stronger interlayer electronic coupling. In addition, Raman
spectra of MoS2 monolayer and bilayers with different twist
angles have been investigated to identify the effective inter-
layer mechanical coupling, that is, larger separation between
two Raman peaks (ωA−ωE) means stronger coupling strength
(Fig. 6(d)). This twist-angle-dependent coupling is attributed

(a)

(c) (d)

(b)

Fig. 6. Electronic and mechanical coupling in twisted MoS2 bilayer. (a) Schematics of MoS2 bilayers with different stacking configura-
tions. Green spheres are Mo atoms; yellow sphere are S atoms. (a) Optical images of a MoS2 monolayer and twisted bilayers with different
twist angles. (c) Photoluminescence and (d) Raman spectra of MoS2 monolayer and bilayers with different twist angles. Reprinted with
permission from Ref. [80]. Copyright 2014, Nature Publishing Group.
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to the varied interlayer distance in van der Waals coupled
2D atomic-layered materials due to steric effect: the increase
of the interlayer distance will weaken the coupling strength.
From their experimental results, AA or AB stacking MoS2 bi-
layer has stronger electronic and mechanical coupling than the
twist angles ones. This conclusion is also suitable for other
TMD bilayers.[81–83]

3.3.2. Stacking-independent ultrafast charge transfer
in twisted TMD heterostructures

TMD heterostructures are of particular interests because
many of them form type II heterojunctions, which facilitate the
efficient separation of photoexcited electrons and holes and
therefore exhibit great potential in the applications of pho-
todetectors, photovoltaics, and sensors. This separation in
MoS2/WS2 bilayers could take place within 50 fs upon pho-
toexcitation due to strong interlayer coupling.[84–86] As the in-
terlayer coupling in 2D heterostructure materials varies with
interlayer twist angles, Ji et al. have investigated how the in-
terlayer charge transfer in MoS2/WS2 bilayers evolves with
different stacking configurations (Fig. 7(a)).[87] In Fig. 7(b),
two obvious peaks in MoS2/WS2 bilayers photoluminescence

spectra correspond to direct A-exciton transitions from MoS2

(peak I) and WS2 (peak II), respectively. Intensity of Peak
I in the heterostructures is 1/5 of that in MoS2 monolayer
indicating strong interlayer electronic coupling and efficient
electron–hole separation. The transient absorption spectra of
MoS2 and MoS2/WS2 bilayers with different twist angles are
shown in Fig. 7(c). Interestingly, they observed that the rise
time of MoS2/WS2 bilayers with different twist angles only
varies slightly, suggesting that the charge transfer time is ro-
bust and stacking independent. This robust ultrafast charge
transfer is contrary to time-dependent density functional the-
ory simulations and naive thinking that stronger interlayer
coupling induces faster charge transfer.[88] In Fig. 7(d), scan-
ning transmission electron microscopy (STEM) image of an
AA stacking MoS2/WS2 bilayer indicates that in addition to
the energy-favourable AA1 stacking, there exists high-energy
stacking of AA3 due to interlayer stretching and shifting. The
existence of multiple parallel charge transfer channels results
in the robust ultrafast stacking-independent charge transfer, as
the measured charge transfer time is mainly determined by the
fastest channel (Fig. 7(e)). Same results have also be reported
by Zhu et al.[89]

(a) (b) (c)

(d) (e)

Fig. 7. Stacking-independent ultrafast charge transfer in TMD heterostructures. (a) Band alignment of MoS2/WS2 bilayers. After pumping
MoS2 A-exciton with ultrafast laser, the electron remains in MoS2 while the hole will transfer to a lower energy at WS2, resulting in an
efficient electron–hole separation. (b) Photoluminescence spectra of MoS2 monolayer and MoS2/WS2 bilayers. The two obvious peaks
in MoS2/WS2 bilayers correspond to direct A-exciton transitions from MoS2 (peak I) and WS2 (peak II), respectively. (c) Transient
absorption spectra of MoS2/WS2 bilayers by selectively probing with a higher energy light at WS2 A-exciton resonance. (d) TEM image
of an AA stacking MoS2/WS2 bilayer. In addition to the energy-favorable AA1 stacking, there exists high-energy state of AA3 stacking
due to interlayer stretching and shifting. (e) Schematic of charge transfer process at the interface of AA stacking MoS2/WS2 bilayers,
where multi-channels coexist. The apparent transfer time is mainly determined by the fastest channel. Reprinted with permission from
Ref. [87]. Copyright 2017, American Chemical Society.

3.3.3. Moiré phonons in twisted MoS2 bilayer

In TMD bilayers, there exists a moiré periodic poten-
tial as well, so electron–phonon coupling and phonon–phonon
interactions can be affected. Lin et al. discovered that the
moiré periodic potential in twisted MoS2 bilayer can modify
the properties of phonons in its MoS2 monolayer constituent
to generate Raman modes related to moiré phonons.[90] They
measured the Raman spectra in the region of 50–425 cm−1 of
the twisted MoS2 bilayers with twist angles ranging from 9◦

to 49◦ under the excitation energy E = 2.54 eV. Apart from
those modes observed in all twisted MoS2 bilayers indepen-
dent of θ like longitudinal acoustic (LA) and transverse acous-
tic (TA) modes, they observed seven series of θ -dependent
Raman modes (Figs. 8(a) and 8(b)). It can be attributed to
that there are seven moiré phonons in the twisted MoS2 bi-
layer. These phonons originate from the phonons in mono-
layer constituents with the basic vectors of moiré reciprocal
lattices folded onto the zone center due to the modulation of
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the periodic moiré potentials (Figs. 8(c) and 8(d)). Due to the
weak interlayer coupling in twisted MoS2 bilayer, the phonon
dispersions of the monolayer constituents can be probed by

the θ -dependent frequency of moiré phonons. In addition, all
these moiré phonons exhibit a mirror behavior with regard to
θ = 30◦.

Fig. 8. Moiré phonons in twisted MoS2 bilayer. (a) and (b) Raman spectra of twisted MoS2 bilayer in the regions of (a) 50–365 cm−1

and (b) 370–425 cm−1. The Raman modes in different phonon branches are represented by different shapes and color symbols.
The Raman spectra of monolayer MoS2 and 3R-bilayer MoS2 (θ = 0◦) are plotted for comparison. (c) and (d) The comparison of
calculated and experimental frequencies of moiré phonons dependent on θ (c) and |g| (d), |g| is the magnitude of the basic vector of
the moiré reciprocal lattices. Reprinted with permission from Ref. [90]. Copyright 2018, American Chemical Society.

3.3.4. Moiré excitons in twisted TMD heterostructures

Exciton is the particle-like entity that formed by an elec-
tron bound to a hole.[91] Moiré excitons are excitons whose en-
ergy levels are quantized arising from the lateral confinement
imposed by the deep moiré potential.[8,11] Jin et al. reported
experimental observation of moiré excitons in WSe2/WS2

bilayers.[8] The optical photograph and schematic diagram are
shown in Figs. 9(a) and 9(b), and the WSe2/WS2 bilayers are
encapsulated in thin hBN layers for protection. The twist an-
gle is identified by the STEM image in Fig. 9(c), which shows
a uniform triangular lattice pattern with a well-defined period-
icity of about 8 nm. In the WSe2/WS2 bilayers with near-zero
twist angle, WSe2 A exciton state splits to three prominent
peaks (labelled as I, II, and III, respectively) corresponding
to distinct moiré exciton states, while only a single resonance
peak appears in large twist angle heterostructures (Fig. 9(d)).
They found that the gate-dependent behaviors of these moiré
exciton states are distinct from that of the A exciton in WSe2

monolayers and WSe2/WS2 bilayers with large twist angles
(Fig. 9(e)). These phenomena can be fully described by a theo-
retical model in which the moiré periodic potential (250 meV)
is much stronger than the exciton kinetic energy (8 meV) and
generates multiple flat exciton minibands. Other three groups
also reported the observation of moiré excitons in TMD het-

erostructures at the same time.[9–11] These observations pro-
vide a promising platform for exploring several theoretical
proposals related to quantum photonics, such as topological

(a) (b) (c)

(e)(d)

Fig. 9. Moiré excitons in twisted TMD heterostructures. (a) and (b) Optical
microscopy image (a) and side-view illustration (b) of a representative het-
erostructure with a near-zero twist angle. (c) A zoomed-in image of atomic-
resolution STEM of near-zero twist angle WSe2/WS2 bilayers showing the
moiré superlattice. The two superlattice vectors are labelled. (d) Reflection
contrast spectrum of near-zero twist angle WSe2/WS2 bilayers (top) com-
pared to a large twist angle one (bottom). (e) Reflection contrast spectra in
the range between 1.6 eV and 1.8 eV of the WSe2. A exciton upon electron
doping. The electron concentration is noted for each spectrum in units of
cm−2. Reprinted with permission from Ref. [8]. Copyright 2019, Nature
Publishing Group.

107304-8



Chin. Phys. B Vol. 28, No. 10 (2019) 107304

excitons, giant spin–orbit coupling, and entangled photon
sources.

4. Conclusion and perspectives
As introduced above, engineering physical properties of

2D bilayers by interfacial twist angle has become a hot topic
in recent years. This is mainly achieved by two mechanisms,
tuning interlayer coupling and moiré periodic potential by tun-
ing the twist angle. Although various novel physics have
been found in the 2D heterostructure family, many of them
such as the unconventional superconductivity and stacking-
independent ultrafast interfacial charge transfer still demand
deeper understanding. Also, developing a universal approach
to continuously tuning the twist angle and thereby modulating
their physical properties is required. At last, massive produc-
tion of clean interface with accurate twist angle and large-area
single crystal is the main challenge for the real applications
based on 2D heterostructure family, which should be on the
schedule to be explored.
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