Enhanced Electrochemical Methanation of Carbon Dioxide at the Single-Layer Hexagonal Boron Nitride/Cu Interfacial Perimeter

Shaohua Chen,⊥ Chenyuan Zhu,⊥ Haoyang Gu, Li Wang, Jiajie Qi, Lixiang Zhong, Zhibin Zhang, Chunlei Yang, Guoshuai Shi, Siwen Zhao, Shuzhou Li, Kaimhui Liu,* and Liming Zhang*

Cite This: Nano Lett. 2021, 21, 4469−4476

ABSTRACT: The electrochemical conversion of CO2 to valuable fuels is a plausible solution to meet the soaring need for renewable energy sources. However, the practical application of this process is limited by its poor selectivity due to scaling relations. Here we introduce the rational design of the monolayer hexagonal boron nitride/copper (h-BN/Cu) interface to circumvent scaling relations and improve the electrosynthesis of CH4. This catalyst possesses a selectivity of >60% toward CH4 with a production rate of 15 μmol·cm⁻²·h⁻¹ at −1.00 V vs RHE, along with a much smaller decaying production rate than that of pristine Cu. Both experimental and theoretical calculations disclosed that h-BN/Cu interfacial perimeters provide specific chelating sites to immobilize the intermediates, which accelerates the conversion of *CO to *CHO. Our work reports a novel Cu catalyst engineering strategy and demonstrates the prospect of monolayer h-BN contributing to the design of heterostructured CO2 reduction electrocatalysts for sustainable energy conversion.

KEYWORDS: CO2 reduction, copper, boron nitride, interface, electrochemistry

INTRODUCTION

CO2 fixation via electrochemical reduction is an energy-efficient green route to directly convert CO2 to energy-dense hydrocarbon fuels under a mild condition, which can potentially solve the environmental risks associated with the increasing serious CO2 emission.1−3 Despite tremendous efforts over the past decades since the pioneering work of Hori et al. to date, the main challenge for CO2 reduction (CO2R) remains the design of a highly active, selective, and stable electrocatalyst.4,5 Distinguished from the proton reduction, CO2R exhibits multiple reaction pathways associated with 2−18 electron transfer, leading to a range of value-added carbon fuels (e.g., CO, formate (HCOO⁻) (both are generated from 2e⁻ pathways)),6,7 and a series of higher-order products (from multiple >2e⁻ pathways) such as methane (CH4), ethylene (C2H4), ethanol (C2H5OH), and n-propanol (n-C3H7OH), etc.8−12 Among various kinds of CO2R catalysts, copper (Cu) is distinctive in its ability to reduce CO2 to hydrocarbon products with substantial yields due to its moderate binding energy between metal Cu and intermediates (i.e., CO*).13−15 However, significant hurdles regarding the poor selectivity of Cu heavily impede electrochemical CO2R to become a viable and practical option for storing renewable electricity.16,17

The preferred reaction pathways of CO2R on Cu strongly correlate with the interfacial structure.18−20 For instance, the activation energies of some key steps in CO2R, such as *CHO formation and *CO dimerization, etc., were recognized as being heavily dependent on the surface facets and morphologies.21−24 The Cu⁺ species on the electrode surface was also proposed to be able to promote the selectivity toward C2⁺ products.25,26 To improve the selectivity toward hydrocarbons, various strategies of modifying Cu for higher CO2R performance, such as the control of size,27,28 surface morphologies,29,30 chemical states,31 and grain boundaries,32 have been proposed and have yielded encouraging results.33 Among the hydrocarbon products in CO2R, CH4 is particularly important as a widely used chemical fuel, which can utilize the existing infrastructure for natural gas storage, distribution, and consumption.34 However, only a few controllable ways to improve the CO2 to CH4 conversion selectivity have been reported,35,36 and more strategies still urgently need to be
developed. In general, the production of CH₄ relies on the following half reaction:

\[\text{CO}_2 + 8\text{H}^+ + 8\text{e}^- \rightarrow \text{CH}_4 + 2\text{H}_2\text{O} \]

which involves eight-electron transfer steps that can easily bifurcate to form a variety of fuels, producing a mixture of CH₄, C₂H₄, CO, HCOOH, and H₂ (from the competing proton reduction) due to the well-known scaling relation. Therefore, we sought to add a further degree of freedom in catalyst design that would increase the reaction rate of the CH₄ pathway without strongly modulating the others, with the goal of circumventing the scaling relations. Atomic layered hexagonal boron nitride (h-BN) is a two-dimensional (2D) star material with a graphene-like layered structure, where the carbon atoms are substituted by the boron and nitrogen atoms alternatively. h-BN has promising applications in electronic packaging and high-power devices, owing to its high thermal conductivity, excellent thermal/chemical stability, and ultrawide band gap. As an insulator with strong stability, h-BN is also widely used as a nano filler in the field of metal anticorrosion. Although various progress has been made in the chemical synthesis and physical properties of h-BN, its catalytic characteristics are rarely explored. In this work, we focus on the interface between Cu and h-BN by uniformly growing a monolayer of h-BN on the Cu surface to trigger the selective production of CH₄ from CO₂R. The obtained interface of h-BN/Cu exhibits superior activity toward CO₂R over proton reduction. More importantly, the selectivity of CH₄ is dramatically increased from ~14% on pure Cu to >60% on the h-BN/Cu interface. Both experimental and density functional theoretical (DFT) calculations disclosed that the h-BN/Cu perimeter provides specific chelating sites to stably immobilize the reaction intermediates, and this unique catalytic coupling synergistically contributes to this distinguished CH₄ production. Our findings demonstrate an important discovery in engineering the interface of Cu catalysts, and lend credence to the prospect of single-layer h-BN contributing to the design of heterostructured CO₂R electrocatalysts for sustainable energy conversion.

RESULTS AND DISCUSSION

The h-BN/Cu heterostructure was prepared following our recently developed strategy with modified conditions. Typically, 5 cm × 5 cm single-crystal Cu foils having an exposed Cu(100) facet were prepared by annealing industrial polycrystalline Cu foils using a designed high-temperature pretreatment. When Cu(100) was used as the substrate, 2D h-BN was subsequently synthesized via a low-pressure chemical vapor deposition (CVD) strategy with ammonia borane (H₃B-NH₃) as the feedstock (details in Supporting Information). As shown in the optical graph (Figure 1a), large-area triangular h-BN domains with a side length of ~50 μm cover the Cu substrate evenly. Atomic force microscopy (AFM) confirmed the successful formation of h-BN with a thickness of <1 nm (Supporting Information Figure S1), corresponding to the single-layer thickness. Although various progress has been made in the chemical synthesis and physical properties of h-BN, its catalytic characteristics are rarely explored. In this work, we focus on the interface between Cu and h-BN by uniformly growing a monolayer of h-BN on the Cu surface to trigger the selective production of CH₄ from CO₂R. The obtained interface of h-BN/Cu exhibits superior activity toward CO₂R over proton reduction. More importantly, the selectivity of CH₄ is dramatically increased from ~14% on pure Cu to >60% on the h-BN/Cu interface. Both experimental and density functional theoretical (DFT) calculations disclosed that the h-BN/Cu perimeter provides specific chelating sites to stably immobilize the reaction intermediates, and this unique catalytic coupling synergistically contributes to this distinguished CH₄ production. Our findings demonstrate an important discovery in engineering the interface of Cu catalysts, and lend credence to the prospect of single-layer h-BN contributing to the design of heterostructured CO₂R electrocatalysts for sustainable energy conversion.

![Optical graph of h-BN/Cu foil](image1.png)

![XRD patterns of Cu substrates with and without h-BN coverage](image2.png)

![Large-scale EBSD mapping](image3.png)
that the growth of h-BN will not alter the orientation of single-crystal Cu substrates in the bulk (Figure 1b). On the contrary, the growth of h-BN under high temperature induced Cu surface reconstruction, from Cu(100) to (610) on the top surface, as evidenced by the uniform color contrast of electron back-scattered diffraction (EBSD) mapping (Figure 1c,d). We also tested the surface reconstruction of the control sample, which was treated at the same temperature without the H3B-NH3 precursor feed, and observed that the surface of Cu was reconstructed from Cu(100) to Cu(510) instead (Figure 1e). Both Cu(610) and Cu(510) facets, denoted as Cu(5)-[110]+(110) and Cu(5)-[110]+(110), respectively, can be visualized as kinked surfaces with narrow (100) terraces and a high density of (110) steps. The angles between the terrace and step of Cu(610) and Cu(510) are 80.1 and 90.0°, respectively (insets of Figure 1d,e). Thus, given the strong coupling between Cu(110) edges and h-BN, we can deduce that the unidirectional alignment of h-BN domains was caused by the step-edge-mediated nucleation due to the presence of parallel step edges (from the uniform surface tilt angle) on the high-index single-crystal Cu facets. The resulting h-BN/Cu heterostructure is schematically illustrated in Figure 1f.

Next, the electrocatalytic CO2R performance of the h-BN/Cu heterostructure was evaluated using a bare Cu substrate treated at the same temperature without h-BN growth as a control sample. Each sample was tested at multiple potentials, and the gas and liquid products were quantified using gas chromatography (GC) and nuclear magnetic resonance (NMR) spectroscopy, respectively. (See the details in Supporting Information Figures S3 and S4.) The linear sweep voltammetry (LSV), the product distribution, and the partial current density on both Cu and h-BN/Cu were plotted as a function of applied potential, as summarized in Figure 2a,b and Supporting Information Figures S5 and S6. It can be observed that the bare Cu catalyst exhibited a similar product distribution to that of metallic Cu reported previously, namely, generating more hydrocarbon products, such as CH4 and C2H4, than oxygenates. An improved electrochemical CO2R performance on h-BN/Cu is evidenced by both significantly enhanced total Faradaic efficiencies (FEs) and production rates. In the potential window examined from −0.80 to −1.05 V vs RHE, <46% of FEs are attributed to CO2R on pure Cu, and a large current has been consumed for proton reduction. In contrast, the introduction of the h-BN/Cu interface promotes the reduction of CO2 across a wide potential window (e.g., the overall FEs toward CO2R (non-hydrogen products) increases from 21, 29, 46, and 28% to 34, 52, 75, and 45%, respectively, in the range of −0.90 to −1.05 V vs RHE, with a −50 mV step increment. The large difference in product distributions between Cu and h-BN/Cu is mostly contributed by the improved generation of higher-order C1 products. Specifically, at −1.00 V vs RHE, the FE of CH4 achieves a fairly high value of >60% on the interface of h-BN/Cu, showing a 4-fold enhancement compared to that of bare Cu at the same potential and being among the best performances in various Cu-based electrocatalysts for CH4-selective production (Supporting Information Table S1).

Beyond CH4, what is surprising is the detection of CH3OH, which, although the amount is not significant (FE ≈ 5%), is rarely reported for Cu-based catalysts in electrochemical CO2R.

To identify the specific fuel production with and without h-BN coverage clearly, we grouped CO2R products as C1 products (e.g., CO, HCOOH, CH4, and CH3OH) and C2 products, including C2H4 and C2H5OH. We calculated the generation rates of both C1 and C2 products from the partial current densities on h-BN/Cu and Cu, respectively (Supporting Information Figure S7). Among C1 products, HCOOH is considered to be a terminal 2e− pathway formed through a
different mechanism apart from CO, CH₄, and CH₃OH.ⁱ⁸ As shown in Figure 2c, the conversion rate of CO₂ to HCOOH is higher on h-BN/Cu across the full potential window from −0.80 to −1.05 V vs RHE and achieves the maximum value at −1.05 V vs RHE, under which the HCOOH production is even unobservable on pure Cu. As mentioned already, the increase in the CH₄ production rate is significantly improved by covering Cu with h-BN (Figure 2d), with a conversion rate sharply increased by more than 7-fold at −1.00 V vs RHE, from 2 to 15 μmol·cm⁻²·h⁻¹. It is also notable that the production of CH₃OH was observed on h-BN/Cu at −1.00 V vs RHE (Supporting Information Figure S8). These results indicate that the conversion of CO₂ to C₂ products is highly promoted at the interface of h-BN/Cu. On the contrary, the presence of the h-BN/Cu interface leads to a suppression of CO production (e.g., the generation of CO decreased by more than 2 times on h-BN/Cu at −1.0 V vs RHE (Supporting Information Figure S9)), indicative of the competitive reaction pathways between HCOOH and CO and the further consumption of CO* intermediates for higher-order products. The higher production rate of CO on Cu can be ascribed to the weaker binding energy between metal Cu and CO* intermediates, while the stronger binding energy between h-BN/Cu and CO* would promote the formation of higher-order C₁ products. It is worth noting that on h-BN/Cu the increase in C₂ production is inconspicuous as compared to the increase in C₁ (Supporting Information Figure S10). This means that CO*−CO* coupling, which generally depends on the concentration of CO* on the interface, would not be largely influenced by the h-BN/Cu interface. As shown in Figure 2e, we next summarized the conversion rate of C₁ and C₂ products at different potentials on h-BN/Cu and Cu and observed that the introduction of h-BN significantly increases the conversion of CO₂ to C₁ products by almost 1 order of magnitude. In particular, the conversion ratio of C₁/C₂ that is achieved is larger than 10 at −1.00 V vs RHE (Figure 2f), and this ratio is in the top rank of the most reported Cu-based CO₂R electrocatalysts (Supporting Information Table 2). Tafel slopes were estimated by plotting the logarithm of the CH₄ partial current density with applied potential, indicating that h-BN/Cu has more rapid kinetics toward CH₄ production (Supporting Information Figure S11).

To investigate the influence of h-BN on Cu, the possible contribution from the different facets of Cu [(110) for bare Cu and (610) for h-BN/Cu] was first excluded by peeling off the h-BN layer through electrochemical polishing and testing the CO₂R performance of the obtained bare Cu(610). The peeling-off process will not change the surface orientation of Cu (Supporting Information Figure S12). The FEs of both C₁ and C₂ products are close to those of bare Cu(110) (having differences of within 5%), indicating that the crystal facets is not the main cause of the accelerated methanation process (Supporting Information Figure S13).

To further understand the superiority of h-BN/Cu heterostructure for C₁ production, we investigated the influence of h-BN coverage on the product distribution. The coverage of h-BN domains can be well controlled by the growth time, and the domains are gradually stitched into an intact piece of film seamlessly as time increases. The coverage and corresponding boundary length of the h-BN film on the Cu substrate were statistically calculated by optical graphs via mathematical means to depict all of the boundary lengths of the h-BN film within the selected area. (See more details in the Supporting Information.) Here we chose five h-BN/Cu samples with 31 ± 6, 43 ± 5, 64 ± 9, 86 ± 8, and 98 ± 2% h-BN coverage (Figure 3a). The corresponding relationship between different coverages and lengths of the h-BN/Cu interfacial perimeter was also plotted (Supporting Information Figure S14). We first demonstrated the relationship between CH₄ selectivity and the coverage of the h-BN film (Figure 3b). After h-BN introduction, both the FE and partial current density of CH₄ exhibit an obviously increasing tendency until the surface coverage of h-BN reaches 86%. However, when the coverage of h-BN achieves 98%, which means that the surface of Cu is nearly coated with the h-BN film, the selectivity of CH₄ decreased drastically to 28%. This result indicates that the coverage of an intact h-BN film is not the crucial cause of the preference for CH₄ production. Instead, we observed an interesting rough linear dependence between the h-BN/Cu interfacial perimeter (boundary length) and the FE of CH₄. As shown in Figure 3c, the FE of CH₄ linearly increases with the increase in the h-BN/Cu boundary length, with a slope of 1.1%/μm. For the samples with 98% h-BN coverage, the boundary length of h-BN/Cu is sharply decreased with the merging of the h-BN film, the selectivity of CH₄ was accordingly decreased. These results demonstrate a slightly improved turnover frequency (TOF) of CH₄ at a larger
Although the partial current density of H₂ exhibits a growing trend with electrolysis time, which indicates the activation of H atoms on the h-BN/Cu interface and their role in the methanation process. It is also notable to observe that, in comparison with CH₄ production, on bare Cu and three h-BN/Cu interfaces having different edge terminations, the CO₂ reduction to CH₄ exhibits a decreasing tendency with the increase in h-BN/Cu boundary length, which is attributed to the partially blocked edges of h-BN by nitrogen atoms at both the armchair and zigzag h-BN/Cu boundaries (Figure 3e). These results reveal the importance of the h-BN/Cu interfacial perimeter in improving the activity toward CO₂ to CH₄ conversion.

To determine whether the morphology and surface composition of the h-BN/Cu electrode changed during CO₂R, h-BN/Cu samples were characterized after electrocatalysis by atomic force microscopy (AFM). AFM images show that after 2 h of electrolysis at −1.00 V vs RHE, most of the edge sites of the h-BN triangular flake (as pointed out by the blue arrow) remain unaffected (AFM images are shown in Supporting Information Figure S16a), and the FE of CH₄ is maintained at >50% in this period. With the reaction time increasing to 4 h, we observed a slightly decreased CH₄ production rate (Supporting Information Figure S16c), which is attributed to the partially blocked edges of h-BN by the growing Cu dendrites (Supporting Information Figure S16b). However, in comparison to bare Cu, the decreasing rate of CH₄ production obviously slowed down, with the production rate decaying only by 9% in 4 h, which is much smaller than that of bare Cu. These results suggest the crucial protective role of the h-BN atomic layer.

DFT calculations were carried out to investigate whether the h-BN/Cu interface can help to adsorb C₁ intermediates. Generally, the reduction of CO₂ to CH₄ starts with the hydrogenation of an adsorbed CO₂* to form COOH* (Supporting Information Figure S16c), which is left on the surface and the third protonation process occurs to form CHO*, which is usually considered to be a rate-limiting step. This suggests that narrowing the energy barrier of CHO* formation can greatly promote CH₄ production. The Cu(100) facet is chosen since other facets are not the main cause of the accelerated methanation process. Three different kinds of active sites (H-terminated armchair h-BN, H-terminated zigzag h-BN having boron atoms exposed on the edge, and H-terminated zigzag h-BN having nitrogen atoms exposed on the edge) were listed as candidates for modeling the interaction between h-BN/Cu boundary and adsorbed CO* and CHO*. Figure 4a illustrates the process of CO₂ conversion to CHO*. In an aqueous solution, boron and nitrogen atoms at both the armchair and zigzag h-BN/Cu boundaries prefer to adsorb H atoms in order to remain stable, and the three different obtained edges listed above can be denoted as BN−H, B−H, and N−H, respectively. In regard to the generation of CHO*, N−H sites can form two hydrogen bonds with adsorbed CO* (N−H−O−C) as depicted in Figure 4a, and the corresponding energy barrier for this process is calculated to be 0.645 eV, which is much smaller in comparison to the other two h-BN/Cu boundaries. (Figure 4b and Supporting Information Figure S17). More importantly, all three edges demonstrate a smaller energy barrier than that on bare Cu, and this result suggests that the synergistic effect of interactions between Cu and h-BN presents a novel strategy for designing highly selective CO₂R electrocatalysts toward C₁ products, such as CH₄ in this work.

CONCLUSIONS

We demonstrated a novel heterogeneous h-BN/Cu interface to circumvent the scaling relations in electrochemical CO₂R. Upon decorating a single layer of h-BN, the current density of the CO₂R was thus increased at the h-BN/Cu interface. More importantly, the higher-order C₁ products have become the major products. At −1.00 V vs RHE, for example, the FE of CH₄ increased from ca. 15% (on pristine Cu) to >60% (on h-BN/Cu), with the production rate enhanced by 7-fold. Such a great change is not a result of the crystal orientation change of Cu surface but is rather a synergistic catalytic effect of the h-BN/Cu interface. Experimental results have shown that by increasing the interfacial perimeter of h-BN/Cu, both the CH₄ selectivity and partial current density are promoted. DFT calculations further reveal that the h-BN/Cu perimeter provides specific chelating sites to stably immobilize the CHO* intermediates, with this unique catalytic coupling synergistically contributing to this distinguished CH₄ production. Our findings open up a promising avenue to tuning the catalytic activity, selectivity, and stability of Cu toward CO₂R, not through the structure engineering of Cu itself but through other facets.
marring Cu with another single-layer component and creating synergy.

ASSOCIATED CONTENT

1. Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.nanolett.1c01258.

Detailed methods and characterization of h-BN/Cu and their electrochemical CO\(_2\) reduction properties (PDF)

AUTHOR INFORMATION

Corresponding Authors

- Kaihui Liu — State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China; orcid.org/0000-0002-8781-2495; Email: khlhu@pku.edu.cn
- Liming Zhang — Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China; orcid.org/0000-0001-6795-3381; Email: zhanglm@fudan.edu.cn

Authors

- Shaohua Chen — Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
- Chenyuan Zhu — Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
- Haoyang Gu — Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
- Li Wang — Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- Jiajie Qi — State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China; orcid.org/0000-0003-3140-7842
- Lixiang Zhong — School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore; orcid.org/0000-0002-8975-9392
- Zhbin Zhang — State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
- Chunlei Yang — Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
- Guoshuai Shi — Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
- Siwen Zhao — Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
- Shuzhou Li — School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore; orcid.org/0000-0002-2159-2602

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.nanolett.1c01258

Author Contributions

L.Z. designed and conceived the experiment. S.C., C.Z., H.G., G.S., and S.Z. fabricated and characterized the electrodes and performed the electrochemical characterization and data analysis. L.W., J.Q., Z.Z., and K.L. carried out the synthesis of the h-BN/Cu electrode and performed EBSD and AFM characterizations. L.Z. and S.L. worked on the DFT calculations. All authors discussed the results and participated in writing the manuscript.

Author Contributions

* S.C. and C.Z. contributed equally to this work.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This research was supported by the National Natural Science Foundation of China (grants 21872039, 22072030, and 52025023) and the Science and Technology Commission of Shanghai Municipality (grants 18JC1411700 and 19DZ2270100).

REFERENCES

