Greatly Enhanced Raman Scattering of Graphene on Metals by a Boron Nitride Film Covering

Chang Liu, O Chaojie Ma, O Dewei Gong, O Chenjun Ma, Dongxue Chen, Chunchun Wu, Mengze Zhao, Zhibin Zhang, Jinming Yun, Fajun Xiao, EnGe Wang, Kaihui Liu,* and Hao Hong*

ACCESS

ABSTRACT: Raman spectroscopy, a nondestructive fingerprinting technique, is mainly utilized to identify molecular species and phonon modes of materials. However, direct Raman characterization of two-dimensional materials typically synthesized on catalytic metal substrates is extremely challenging because of the significant electric screening and interfacial electronic couplings. Here, we demonstrate that by covering as-grown graphene with boron nitride (BN) films, the Raman intensity of graphene can be enhanced by two orders of magnitude and is also several times stronger than that of suspended graphene. This great Raman enhancement originates from the optical field amplification by Fabry–Pérot cavity in BN films and the local field plasmon near copper steps. We further demonstrate the direct characterization of the local strain and doping level of as-grown graphene and in situ monitoring of the molecule reaction process by enhanced Raman spectroscopy. Our results will broaden the optical investigations of interfacial sciences on metals, including photoinduced charge transfer dynamics and photocatalysis at metal surfaces.

Graphene has attracted intensive research interest and exhibited great potential in electronic, optoelectronic, and nanomechanical applications due to its exceptional properties, including its intriguing Dirac band structure, high unique hot carrier dynamic processes, superior mechanical strength, etc. For practical applications, high-quality graphene with a large area is a prerequisite and relies on the accompanying high-throughput synthesis and quality inspection. Generally, the synthesis of monolayer graphene on a catalytic metal substrate (such as copper foil) by the chemical vapor deposition (CVD) method has been well developed, yet a reliable in situ characterization method still remains immature. Among the abundant characterization technologies, including X-ray diffraction, low-energy electron diffraction, and scanning transmission electron microscopy, Raman spectroscopy is highly promising with the merits of nondestructive characterization and high efficiency. However, Raman signals from graphene are typically very weak due to the nature of the inelastic scattering process, as well as the atomic-thick light–matter interaction length. Especially for as-grown graphene on metal substrates, the optical signals including Raman signals will be further reduced by the significant electric screening effect from the metal beneath. The strong interfacial coupling would also worsen the situation by hybridizing the electronic states of materials with d-orbital electrons from metals and strongly modify the Raman signal.

Previously, lots of routes have been developed to boost the Raman signals by physical and chemical enhancement, such as surface-enhanced Raman spectroscopy and tip-enhanced Raman spectroscopy, etc. However, those methods are in need of designed substrates or metal tips producing a local electromagnetic field hot spot, which are not suitable to realize in situ Raman characterization of as-grown graphene on various metal substrates under different circumstances. Chemical enhancement holds the merit of the independence of the electromagnetic environment, while the elusive mechanism of the complex charge transfer process hinders its practical design and application. Other methods such as conducting Raman spectroscopy by tuning the excitation laser energy or spontaneous oxidation of the underlying copper substrate only exhibit Raman enhancement of several times. The oxidation process is also not applicable for noble metals such as gold and platinum. As for conducting a transfer process to remove the metal substrates, the samples could be transferred onto substrates such as silicon oxides/silicon (SiO$_2$/Si) with a certain oxidation layer thickness. However, such a transfer process is complex and would inevitably introduce defects, wrinkles, or contaminants to the samples. A facile but efficient enhancement method is still needed to directly conduct in situ

Received: April 20, 2023
Accepted: June 6, 2023
Published: June 12, 2023

© 2023 American Chemical Society

https://doi.org/10.1021/acs.jpclett.3c01074
Raman characterization of as-grown graphene on metal substrates.

Here we demonstrate that great and uniform Raman enhancement can be achieved on metal substrates by covering as-grown graphene on copper with boron nitride (BN) films. The interface between air/BN and BN/metal surface forms an interferential Fabry–Pérot (F–P) cavity to realize optical field enhancement. Together with plasmonic local field enhancement near the copper step, the Raman intensity of graphene can be enhanced by about two orders of magnitude compared to that of bare graphene on copper. The local strain distribution and doping level of graphene grown on copper...
can be clearly resolved in situ with the enhanced Raman signals. This facile method can serve as a robust Raman enhancement tool for other low-dimensional materials and chemical molecules, including MoS$_2$ on gold, R6G molecules, and even a molecular reaction on copper.

In our experiment, graphene was synthesized using CVD on Cu(111) substrates. Then, BN films with a uniform thickness were transferred onto as-grown graphene by dry transfer methods (Figure 1a, see Methods for details). The typical thickness of the covered BN film is about 50 nm, as characterized by atomic force microscope (AFM) mapping (Figure 1b). Raman spectra of graphene on copper (Gr/Cu), BN-covered graphene on copper (BN/Gr/Cu), and other configurations, including graphene on SiO$_2$ (300 nm)/Si (Gr/SiO$_2$/Si), graphene on fused silica (Gr/SiO$_2$), and suspended graphene (suspended Gr, Figure S1), upon laser excitation of 633 nm are shown in Figure 1c for comparison. In contrast to the spectrum of suspended graphene, both the Raman G mode and 2D mode of Gr/Cu split into two peaks and exhibit a dramatic decrease in intensity, while the Raman spectrum of BN/Gr/Cu* with the BN film covering near the copper step (the copper step is known as the corrugated morphology of surfaces) exhibits a pretty good line shape and strong intensity (Figure 1c). To directly compare the Raman intensity, we calculated the Raman enhancement factor in Figure 1d. In the BN/Gr/Cu configuration, the Raman intensities of graphene have been enhanced by a factor of \sim13 for both modes compared to those in bare Gr/Cu. Strikingly, in BN/Gr/Cu*, the Raman enhancement increases to \sim50–100, with intensity also stronger than that of suspended graphene (Figure 1d).

The position-dependent enhanced Raman signals inspire us to analyze the enhancement effects by studying configurations of BN/Gr/Cu and BN/Gr/Cu* separately. As for the BN/Gr/Cu configuration, the air/BN and BN/Cu interfaces form an interferential F–P cavity, resulting in the optical field enhancement near the graphene layer (Figure 2b). As the interference condition of a F–P cavity is a function of the laser wavelength and the cavity length, the enhancement factor varies correspondingly with the BN thickness and excitation wavelength (Figure S2). Both G and 2D peaks show the largest enhancement factor with a BN thickness of \sim55 nm from experimental and simulation results (Figure 2d). Similar Raman enhancements were also observed in the configurations of TiO$_2$/Gr/Cu and MoSe$_2$/Gr/Cu (Figure S3).

As for the BN/Gr/Cu* configuration near the copper step, besides F–P cavity amplification, the nanosized step edge produces an additional optical field enhancement from the local surface plasmon (LSP) effect (Figure 2c). Using reflection contrast spectra, we experimentally find a resonance peak in a typical BN/Gr/Cu* sample (Figure 2e). This LSP resonant peak is closely related to the structure of the copper step, as characterized from our more than 20 samples. Our excitation wavelength (633 nm) correctly locates in the LSP resonance peak range of 600–650 nm and thus the Raman is further enhanced by nearly two orders of magnitude. Moreover, the Raman intensity of BN/Gr/Cu* exhibits a polarization-dependent behavior closely related to the orientation of copper step, which is a standard feature of the LSP effect (Figure S4). As the Raman intensities from bare Gr/Cu and Gr/Cu* are almost the same, the greatly enhanced Raman intensity from BN/Gr/Cu* corresponds to the formation of LSP by the coverage of BN film (Figure S5).
This highly agrees with our simulation results, where the copper step structure in the BN/Gr/Cu\(^*\) configuration brings about a local optical field hot spot near the step edge (Figure 2f).

During the graphene synthesis process on metal surface, substrate-induced strain is ubiquitous because of the discrepancy in the thermal expansion coefficient between graphene and metal\(^{17-20}\) (e.g., copper has a thermal expansion coefficient of \(\sim 2 \times 10^{-5} \text{ K}^{-1}\)), while graphene has a negligible coefficient). The enhanced Raman signal of the BN/Gr/Cu configuration directly provides us the opportunity to characterize the local strain together with doping information on as-grown graphene on a copper substrate.\(^{18-23}\) By conducting Raman mapping (Figure 3a and b), the clearly resolved Raman peak splitting and shifting will illustrate the detailed strain and doping level. Three Raman spectra (marked by red dots in Figure 3b) around BN/Gr/Cu\(^*\) are shown in Figure 3c. In the positions away from the step (the left and right points in Figure 3b with the configuration of BN/Gr/Cu\(^*\)), both G and 2D peaks split into two components with lower/higher frequency, denoted by G\(^*\)/\(G^{\prime}\) and 2D\(^*\)/\(2D^{\prime}\), respectively. The Raman peak splitting of the G and 2D modes indicates the uniaxial strain in the graphene lattice. In the position of the step (the middle points in Figure 3b with a configuration of BN/Gr/Cu\(^*\)), both G and 2D peaks of graphene exhibit pretty good single peak features with lower frequencies (Figure 3c).

The strain (\(\epsilon\)) and doping of as-grown graphene on a copper substrate can be analyzed by the correlation between frequencies of the G and 2D modes using vector analysis (i.e., “strain-free” vector \(\epsilon_d\) for hole doping and “charge-neutral” vector \(\epsilon_s\) for tensile strain, as shown in the inset of Figure 3d). The suspended monolayer graphene sample without the influence of strain and the doping effect was investigated for comparison (Figure S1), with the G mode at 1572 cm\(^{-1}\) and the 2D mode at 2624 cm\(^{-1}\) (orange circle (O) in Figure 3d). The blue-shifted Raman peaks of graphene in BN/Gr/Cu\(^*\) indicate the strain is compressive. By conducting correlated analysis of the G\(^*\)/(G\(^\prime\)) and 2D\(^*\)/(2D\(^\prime\)) peaks, the strain and doping level of graphene can be investigated separately. The blue dashed lines in Figure 3d indicate the randomly oriented uniaxial strain effect without charge doping (with slopes \(\Delta \omega_{2D}/\Delta \omega_{G} = 1.97\) and 2.5 for \(2D^{\prime}/G^{\prime}\) and \(2D^{\prime}/G^{\prime}\), respectively), while the olive dashed lines indicate the hole doping effect without strain (with a slope \(\Delta \omega_{2D}/\Delta \omega_{G} = 0.7\)).\(^{24}\) Notably, the Raman data dots from the mapping area of a typical BN/Gr/Cu\(^*\) sample (Figure S2) distribute well along blue dashed lines. After statistical analysis (Figures 3d and S6), we can obtain the compressive strain to be about \(-0.77\%\) (\(-0.76\%\)) with a standard deviation of 0.26% (0.085%) for the G\(^*\)/(G\(^\prime\)) mode. Remarkably, the Raman data sets of two different steps (red cross in Figure 3d) tend to concentrate into two groups (centered around \(-0.65\%\) and \(-0.95\%\), respectively, Figure S6c), indicating the distinct build-up strain and strain relaxation results for different copper steps. Unlike the strain relaxation results in graphene wrinkles where the strain is believed to be released,\(^{49}\) it is the release of local bending energy of graphene (not the compressive strain) that drives the step-bunching process in the vicinity of surface steps on the copper.\(^{50}\)

As for the doping effect, the change of \((\Delta \omega_{2D}/\Delta \omega_{G})\) is determined by the sign of the charges. However, either hole (vector \(\epsilon_d\)) or electron (vector \(\epsilon_s\)) doping would lead to smaller slopes of \((\Delta \omega_{2D}/\Delta \omega_{G})\), which is not sufficient in our experiments (\(n < 1 \times 10^{10} \text{ cm}^{-2}\)). The slight upshift of the data set distribution compared with the dashed line can be attributed to the existence of an interlayer vander Waals interaction between graphene and BN, which modifies the
Fermi velocity of graphene and results in an increase in ω_{2D} (corresponding to the vector of e_F).23,25

Due to the effective Raman enhancement mechanism of cavity amplification and LSP effects, the coverage of the BN film could serve as a universal enhancement tool on the metal surfaces. For example, it is pretty convenient to obtain an enhanced Raman spectrum of graphene on platinum substrate (Gr/Pt), as well as MoS$_2$ on a gold substrate (MoS$_2$/Au), by covering the sample with BN films (Figure 4a and b). What’s more, the amplified optical field intensity could lead to the enhancement of other optical responses, such as photoluminescence (PL) of R6G molecules (Figure 4c).

Enhanced optical signals for molecules enable us to monitor the molecule reaction process in situ. We choose p-aminothiophenol (PATP) molecules as the reactants and monitored the laser-induced chemical transformation to p,p'-dimercaptobenzeno (DMAB) molecules31,52 (Figure 4d). In our experiment, the copper substrate was first soaked in the ethanol solution of PATP at a low concentration (10^{-3} mol/L) and then covered with the BN film. As for bare PATP/Cu, the Raman signals of the PATP and DMAB molecules can hardly be detected under laser illumination (Figure 4e), while with BN film coverage the laser-induced PATP to DMAB reaction process can be clearly characterized by the emergence of product Raman signals (such as those at 1146, 1377, and 1425 cm$^{-1}$) (Figure 4f). In this design, the BN/PATP/Cu configuration plays the role of facilitating the chemical reaction process as well as enhancing the Raman signals of molecules, as the excitation optical field has been enhanced.

In conclusion, we have developed an effective and robust method of BN film covering to achieve Raman enhancement for low-dimensional materials on various metal substrates, including Gr/Cu, Gr/Pt, MoS$_2$/Au, and molecules on a metal surface. The Raman emission of graphene can be enhanced by about two orders of magnitude in situ on a copper substrate. Given the universality of our approach, the enhanced optical field from the BN film covering can be widely utilized for optical investigations of interfacial sciences on metals in combination with time-resolved spectroscopy, such as photo-induced charge carrier dynamics at metal surfaces, and electron dynamics in metal nanostructures.

METHODS

Sample Preparation. The graphene was synthesized by CVD. A copper foil was first placed on a quartz substrate and loaded into the CVD furnace. Then the system was heated to 1040 °C under a reducing atmosphere of 500 standard cubic centimeters per minute (scm) Ar and 30 scm H$_2$. After the sample was held at 1040 °C for 1 h to obtain single crystal copper foil, 0.01 scm/100 scm of CH$_2$/H$_2$ was introduced into the system for 10–30 min to obtain graphene on copper (Gr/Cu). The BN films deposited on Gr/Cu were mechanically exfoliated from the bulk and then underwent with transfer process (Figure S7).

Raman Characterization. Raman spectra and mappings were collected by a Horiba system (iHR-550) with excitation wavelengths of 633 and 532 nm. As for the polarization dependence measurement, the Raman spectra were collected by a Witec system (Alpha-700R) with an excitation wavelength of 514 nm by rotating the incident polarization. All the Raman spectra analyzed in the main text are under the excitation of 633 nm unless otherwise stated.

Simulation. Numerical simulations were processed using the Wave Optics Module of COMSOL Multiphysics software. The intensity of the electric field was calculated using the finite element method in COMSOL.

ASSOCIATED CONTENT

Supporting Information
The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.jpcl.3c01074.

Additional experimental results (PDF)

AUTHOR INFORMATION

Corresponding Authors

Kaihui Liu — International Centre for Quantum Materials, Collaborative Innovation Centre of Quantum Matter, Peking University, Beijing 100871, China; State Key Laboratory for Mesoscopic Physics, Frontiers Science Centre for Nano-Optoelectronics, School of Physics, Peking University, Beijing 100871, China; Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu 226000, China; orcid.org/0000-0002-8781-2495; Email: khliu@pku.edu.cn

Hao Hong — State Key Laboratory for Mesoscopic Physics, Frontiers Science Centre for Nano-Optoelectronics, School of Physics and Interdisciplinary Institute of Light-Element Quantum Materials and Research Centre for Light-Element Advanced Materials, Peking University, Beijing 100871, China; Email: haohong@pku.edu.cn

Authors

Chang Liu — International Centre for Quantum Materials, Collaborative Innovation Centre of Quantum Matter, Peking University, Beijing 100871, China; orcid.org/0000-0002-6273-6465

Chaojie Ma — State Key Laboratory for Mesoscopic Physics, Frontiers Science Centre for Nano-Optoelectronics, School of Physics, Peking University, Beijing 100871, China; orcid.org/0000-0003-3649-5220

Dewei Gong — State Key Laboratory for Mesoscopic Physics, Frontiers Science Centre for Nano-Optoelectronics, School of Physics, Peking University, Beijing 100871, China

Chenjun Ma — State Key Laboratory for Mesoscopic Physics, Frontiers Science Centre for Nano-Optoelectronics, School of Physics, Peking University, Beijing 100871, China

Dongxue Chen — State Key Laboratory for Mesoscopic Physics, Frontiers Science Centre for Nano-Optoelectronics, School of Physics, Peking University, Beijing 100871, China

Chunchun Wu — State Key Laboratory for Mesoscopic Physics, Frontiers Science Centre for Nano-Optoelectronics, School of Physics, Peking University, Beijing 100871, China

Mengze Zhao — State Key Laboratory for Mesoscopic Physics, Frontiers Science Centre for Nano-Optoelectronics, School of Physics, Peking University, Beijing 100871, China

Zhibin Zhang — State Key Laboratory for Mesoscopic Physics, Frontiers Science Centre for Nano-Optoelectronics, School of Physics, Peking University, Beijing 100871, China

Jinming Yun — Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China

https://doi.org/10.1021/acs.jpcl.3c01074

Fajun Xiao — Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China; orcid:0000-0002-7656-7869
EnGe Wang — International Centre for Quantum Materials, Collaborative Innovation Center of Quantum Matter, Peking University, Beijing 100871, China; Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China; Department of Physics, Shanghai University, Shanghai 200444, China

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.jpcl.3c01074

Author Contributions
These authors contributed equally to this work.

Notes
The authors declare no competing financial interest.

Acknowledgments
This work was supported by the Guangdong Major Project of Basic and Applied Basic Research (2021B0301030002), the National Natural Science Foundation of China (12104018, 52025302, 51991342, 52021006, 92163206, 11888101, and T2188101), the National Key R&D Program of China (2021YFA1400502), and the China Postdoctoral Science Foundation (2022M710232, 2020M680177, 2021T140022).

References

(2) Zhang, Y. B.; Tan, Y. W.; Stormer, H. L.; Kim, P. Experimental Observation of the Quantum Hall Effect and Berry’s Phase in Graphene. Nature 2005, 438, 201–204.
The Journal of Physical Chemistry Letters

Strain Relaxation of Graphene by Corrugation on Copper Crystal Surfaces. Small 2018, 14, 1800725.

Roughening.

Recommended by ACS

Fast Twist Angle Mapping of Bilayer Graphene Using Spectroscopic Ellipsometric Contrast Microscopy

Teja Potočnik, Jack A. Alexander-Webber, et al.

JUNE 08, 2023

NANO LETTERS

Observation of Robust and Long-Ranged Superperiodicity of Electronic Density Induced by Intervalley Scattering in Graphene/Transition Metal Dichalcogenide Heterostructures

Mo-Han Zhang, Lin He, et al.

APRIL 03, 2023

NANO LETTERS

In Situ Growth Dynamics of Uniform Bilayer Graphene with Different Twisted Angles Following Layer-by-Layer Mode

Wei Wei, Yi Cui, et al.

NOVEMBER 29, 2022

THE JOURNAL OF PHYSICAL CHEMISTRY LETTERS

Surface Functionalization of Substrate-Transferred Graphene for Electronic Applications

Jing-jiang Yu, Armen Gulian, et al.

MAY 03, 2023

ACS APPLIED NANO MATERIALS

Get More Suggestions >