Stacking-Controlled Growth of rBN Crystalline Films with High Nonlinear Optical Conversion Efficiency up to 1%

Jiajie Qi, Chenjun Ma, Quanlin Guo, Chaojie Ma, Zhibin Zhang, Fang Liu, Xuping Shi, Li Wang, Mingshan Xue, Muhong Wu, Peng Gao, Hao Hong, Xinqiang Wang, Enge Wang, Can Liu*, and Kaihui Liu*

J. Qi, Chenjun Ma, Q. Guo, Chaojie Ma, Z. Zhang, F. Liu, X. Shi, H. Hong, X. Wang, K. Liu

State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China

L. Wang, E. Wang

Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

M. Xue

School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China

M. Wu, P. Gao, E. Wang, K. Liu

International Center for Quantum Materials, Collaborative Innovation Center of Quantum Matter, Peking University, Beijing 100871, China

C. Liu

Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Department of Physics, Renmin University of China, Beijing 100872, China

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1002/adma.202303122.

This article is protected by copyright. All rights reserved.
E. Wang, K. Liu

Songshan Lake Materials Lab, Institute of Physics, Chinese Academy of Sciences,
Dongguan 523808, China

Keywords: rhombohedral boron nitride, two-dimensional materials, nonlinear optical crystals, second harmonic generation

Corresponding authors: canliu@ruc.edu.cn; khliu@pku.edu.cn

Abstract

Nonlinear optical crystals lie at the core of ultrafast laser science and quantum communication technology. The emergence of two-dimensional (2D) materials provides a revolutionary potential for nonlinear optical crystals due to their exceptionally high nonlinear coefficients. However, uncontrolled stacking orders generally induce the destructive nonlinear response due to the optical phase deviation in different 2D layers. Therefore, conversion efficiency of 2D nonlinear crystals is typically limited to less than 0.01% (far below the practical criterion of >1%). Here, we controllably synthesize crystalline films of rhombohedral boron nitride (rBN) with parallel stacked layers. This success is realized by the utilization of vicinal FeNi (111) single crystal, where both the unidirectional arrangement of BN grains into a single-crystal monolayer and the continuous precipitation of (B, N) source for thick layers are guaranteed. The preserved in-plane inversion asymmetry in rBN films keeps the in-phase second harmonic generation field in every layer and leads to a record-high conversion efficiency of 1% in the whole family of 2D materials within the coherence thickness of only 1.6 μm. Our work provides a route for designing ultrathin nonlinear optical crystals from 2D materials, and will promote the on-demand fabrication of integrated photonic and compact quantum optical devices.

1. Introduction

Two-dimensional (2D) boron nitride (BN), with broad spectrum transparency (optical bandgap of ~6 eV)\(^{[1, 2]}\), large nonlinear coefficient \(\chi^{(2)}\) (ranging from 10 to 40 pm V\(^{-1}\))\(^{[3-8]}\), excellent physicochemical stability (steady at 1,500 °C in air) and laser damage threshold (theoretically of 7.95
TW cm⁻² under 1,600 nm femtosecond pulsed laser excitation), has been regarded as a promising candidate for ultrathin nonlinear optical crystals. However, the absolute light-matter interaction for BN monolayer is too weak (the typical conversion efficiency is below 10⁻⁹), due to the limited interaction length of only one atomic-layer thickness. Among numerous engineering methods, increasing the number of BN layers is definitely able to strengthen the light-matter interaction. While for the universal bulk BN crystals of hexagonal phase (hBN), the adjacent layers follow the 180°-rotated stacking sequence, where the restored inversion symmetry gives rise to a quenched nonlinear optical response between adjacent layers. In contrast, rhombohedral BN (rBN) thick crystals, in which each atomic layer is stacked in parallel to maintain the same in-plane dipole orientation, naturally satisfy the coherent enhancement condition of nonlinear optical signals. Hence, the stacking-controlled growth of rBN thick crystals is an essential prerequisite for harnessing versatile and efficient nonlinear optical processes, as well as for facilitating compact integrated photonic applications.

In contrast to the success in wafer-scale production of single-crystal BN monolayers and few layers, the growth of thick rBN can be achieved only in a narrow experimental window and the preparation status is stuck in nanosheets or bulk flakes mixed with hexagonal and turbostratic phases. The quite low solubility of B or/and N in epitaxial substrates (Cu, Ni, Pt, Ru, etc.) usually dominates the self-limited growth and therefore restricts the formation of adlayers for a thick crystal. Recently, great progress has been made to tackle this limitation, notably the development of dissolution-precipitation growth strategies, e.g., the vapor-liquid-solid synthesis method and metal solvent-assisted approaches. The thickness of as-synthesized BN film is remarkably increased, ranging from tens of nanometers to microns. However, the absence of surface or/and interface modulations in these molten-substrate-based methods makes the arrangement of BN layers governed by the weak van der Waals interaction, resulting that the major component is routinely of the most thermodynamically-stable hBN. Thus, exploiting accessible techniques to simultaneously achieve adequate supply of (B, N) source and the effective modulation of stacking order is paramount for obtaining large-sized thick rBN crystal.

In this work, we propose a stacking-controlled continuous precipitation strategy to synthesize uniform rBN crystalline films (lateral size of 2 × 1 cm² and thickness >1 μm) on the vicinal surface of single-crystal FeNi (111) foil. The presence of parallel steps on the FeNi surface guides BN grains to be seamlessly stitched into a single-crystal monolayer, and the continuous dissolution and
precipitation of (B, N) sources in FeNi further ensure those monolayers to be stacked in a parallel sequence for rBN thick layers. The unidirectional in-plane polar dipoles along the armchair direction in each BN monolayer, together with parallel stacking structure in adjacent layers, contribute to the coherent enhancement of nonlinear optical signals. Moreover, the off-resonant excitation capability of rBN, which is undisturbed in the ultraviolet (UV) and visible (vis) spectral range due to its large bandgap, allows the rBN crystalline film to exhibit a higher laser-induced damage threshold of approximate 200 GW/cm² compared to other reported 2D nonlinear materials. Consequently, a high absolute second harmonic generation (SHG) efficiency up to 1% was feasibly accessible within this well-stacked rBN crystalline film with the coherence thickness of 1.6 μm. This work highlights the immense potential of rBN as a ultrathin nonlinear optical crystal over a broad spectral transparency window and lays the groundwork for advancing 2D-material-based ultrafast and high-power lasers, photonic integrated circuits and quantum light sources.

2. Results and discussion

2.1. Preparation of vicinal FeNi (111) single crystal

In our growth strategy, the utilization of FeNi foil is a key for the precipitation of rBN thick layers, because (i) the dissolution of both B (through reaction-diffusion with Fe and Ni) and N (solubility of ~8 at.% at 1,000 °C in Fe) atoms enables to be significantly increased in FeNi alloys;[30] (ii) the introduction of Ni atoms can effectively prevent the phase transition of pure Fe and guarantee the formation of large-scale FeNi single crystals;[37] (iii) the parallel steps on solid FeNi surface are capable to manipulate the stacking configuration of BN crystalline films.

Based on the seeded abnormal grain growth mechanism,[38] centimeter-scale single-crystal FeNi with (111) vicinal surface (we name as v-(111) below if not specified) was prepared by annealing a commercial polycrystalline Permalloy foil (60 wt.% Fe) at 1,450 °C near the molten point (Figure 1a,b, and Experimental section). Parallel steps existing on the FeNi v-(111) was steadily extended along with the grain enlargement, which was further demonstrated by the atomic force microscopic (AFM) image (Figure 1e) after cooling down to the room temperature. Figure 1c,d showed the uniform in-plane energy dispersive spectroscopic (EDS) mappings of Fe and Ni, respectively, indicating that both components were evenly distributed without phase
separation. For investigating the FeNi alloy crystallography, electron back-scatter diffraction (EBSD) and X-ray diffraction (XRD) measurements were specifically conducted. As shown in Figure 1f, the uniform color in EBSD inverse pole figure (IPF) mapping along Z direction verified that the whole FeNi alloy possessed the same \(v-(111)\) surface; meanwhile, the IPF mapping along X direction affirmed the \(v-(111)\) surface without any in-plane rotation (Figure 1g). Furthermore, the sharp (111) peak in the XRD 2\(\theta\)-scan pattern (Figure 1h) and the presence of only three peaks at an interval of exactly 120° in the \(\varphi\)-scan data (Figure 1i), unambiguously confirmed the single-crystal nature of large-scale FeNi \(v-(111)\) substrate.

2.2. Stacking-controlled growth of rBN crystalline film

In the rBN crystalline film growth, the pre-annealed single-crystal FeNi \(v-(111)\) substrate was tightly placed onto a piece of hot-pressed BN paper (Figure 2a). At elevated temperatures, the (B, N) sources from the paper would incessantly dissolve into the one-side surface, diffuse through the whole metal and finally precipitate at the opposite surface of the FeNi foil, where the growth process is similar with that of single-crystal graphite film.\(^{[39]}\) When the (B, N) source precipitated from the FeNi foil, the atomic steps on \(v-(111)\) surface would guide them to form unidirectionally aligned BN domains and seamlessly stitch together to create the single-crystal BN monolayer. Then, the subsequent BN layers were precipitated with the same grain orientation as the first layer under the same step-controlled condition, and stacked in parallel to obtain the rBN thick layers. After 40 hours of growth, a homogenous rBN thick film was formed on the FeNi \(v-(111)\) surface with a typical lateral size of \(2 \times 1 \text{ cm}^2\) (Figure 2b). The thickness of BN film was evaluated to be \(\sim 1.2 \mu\text{m}\) as shown in the cross-sectional scanning electron microscopic (SEM) image, in which the insulating BN showed a brighter contrast than that of conductive FeNi substrate (Figure 2c and Figure S1). Meanwhile, the precipitated thickness showed a linear dependence on the growth time with an estimated rate of about 30 nm h\(^{-1}\) (Figure S2).

Additionally, due to the different coefficients of thermal expansion of BN film and metal foil,\(^{[40]}\) the as-grown rBN layers would shrink and form wrinkles during the cooling process. The high crystallinity of rBN films with in-plane threefold symmetry...
can be directly inferred from the observed wrinkles (Figure 2d), which are oriented along three main directions with a relative angle of 60°. Figure 2e showed that rBN crystalline films can be intactly transferred onto the fused silica and exhibit high optical transparency. The intrinsic bandgap of rBN film was further identified to be \(\sim 5.8 \) eV by UV-vis absorption spectroscopy (Figure 2f) and the corresponding Tauc plot of \((\alpha E)^{1/2} \) vs. \(E \) (Figure S3a). Here \(\alpha \) and \(E \) represent the optical absorption coefficient and the photon energy, respectively, and the usage of exponent 1/2 is due to the indirect bandgap property of rBN crystals.[41] This large bandgap guarantees that our BN films are capable to achieve nonlinear frequency conversion over a wide spectral range without the absorption of generated signals. The pronounced (003) and (006) peaks in the XRD 2\(\theta \)-scan data confirmed that the as-grown BN film was well aligned along the out-of-plane direction perpendicular to the substrate (Figure 2g). Additionally, in X-ray photoelectron spectroscopic (XPS) measurements, the sharp characteristic peaks of B 1s and N 1s indicated that a pristine BN film has been obtained (Figure S3b). Figure 2h illustrated the characteristic Raman E\(_{2g}\) peak of rBN crystals at 1,365 cm\(^{-1}\) with a narrow full width at half maximum (FWHM) of \(\sim 9 \) cm\(^{-1}\), which verified the high crystalline quality.

2.3. Confirmation of interlayer stacking sequence of rBN crystalline film

As illustrated in Figure 3a, there are generally two types of stable configurations for BN thick layers.[36] In the hBN phase, hexagons are aligned, but adjacent layers are rotated by 180° relative to each other (right panel in Figure 3a). This arrangement is referred to as the AA‘A stacking order with the restored inversion symmetry. In contrast, the rBN phase exhibits the ABC stacking sequence and consists of BN layers successively translating in the same direction by the interatomic distance (left panel in Figure 3a). This configuration preserves the in-plane inversion asymmetry inherently in the BN monolayer. And the two distinct interlayer stacking sequence of hBN and rBN will result in destructive and constructive nonlinear optical responses (discussed in further detail later), respectively. As evidenced that the rBN crystal exhibited a six-fold polarized SHG pattern with an intensity of five orders of magnitude stronger than that of the commercial hBN flakes at a same thickness of \(\sim 40 \) nm (Figure 3b). Three main peaks at intervals of exactly 120° in the XRD \(\varphi \)-scan data (Figure 3c) indicated that the as-grown rBN crystalline film predominantly followed the ABC stacking...
order due to its $R3m$ symmetry. Otherwise, there would be six peaks with identical intervals of 60° in the XRD φ-scan for both hBN crystals and twinned rBN crystals.$^{[22]}$

To further verify the stacking sequence of the as-grown rBN, high-resolution transmission electron microscopy (HRTEM) was employed to visualize its atom arrangement. As depicted in Figure 3d, the equal-contrast triangular lattice with the lattice constant of 0.252 nm along the a-axis was a strong signature of the ABC stacking structure. Simultaneously, the first-order to second-order peak intensity ratio was near zero in the selected area electron diffraction (SAED) pattern (Figure 3e), which has also been widely utilized to figure out the rBN crystalline morphology.$^{[42]}$ Furthermore, the cross-sectional scanning transmission electron microscopic (STEM) image of rBN clearly demonstrated that each layer slid along the same direction through the single B-N bond distance, providing direct evidence of the parallel ABC stacking configuration (Figure 3f). The 2θ peak position of $\sim26.72^\circ$ in high-resolution XRD (0.12% smaller than that of hBN) (Figure 3g) was consistent with the interlayer distance of 0.333 nm and further confirmed the rhombohedral phase structure of the precipitated thick rBN crystal. We also occasionally observe the ABA-stacking (Bernal) phase, wherein the BN layers are also in parallel but the periodicity is only two layers instead of three layers found in ABC-stacking phase. Actually, both two phases contribute equally to the in-plane nonlinear optical response.

2.4. High-efficiency SHG response of rBN crystalline film

To qualitatively understand the stacking-determined nonlinear optical response as mentioned above, we illustrate the layer-dependent SHG in both rBN and hBN thick crystals. In the case of hBN, the 180°-rotated stacking order results in antiparallel orientations of second-order nonlinear polarization $P(2\omega)$ in adjacent layers (Figure 4b, right panel). This causes the SHG intensity ($I(2\omega)$) to destructively interfere with one another, leading to $I(2\omega)$ tending to be zero in hBN crystals with even number of layers. In contrast, for rBN crystals, the parallel stacking structure ensures unidirectional alignment of each $P(2\omega)$, which facilitates constructive interference of the second harmonic electric field and coherent enhancement of $I(2\omega)$ as rBN’s thickness (T) increases (Figure 4b, left panel). Quantitatively, the thickness dependence of $I(2\omega)$ can be calculated as below (more details in Supplementary Note 1):

$$I(2\omega) = \frac{4\omega^2}{c^3\varepsilon_0 n^2(\omega)n(2\omega)}\chi^{(2)}(2)I^2(\omega)T^2\sin^2(\Delta k \cdot T/2)/(\Delta k \cdot T/2)^2, \#(1)$$

This article is protected by copyright. All rights reserved.
where \(\chi^{(2)} \) represents the second-order nonlinear coefficient of rBN films and is measured to be 30 pm V\(^{-1}\) using the \(d_{32} \) of LiNbO\(_3\) as reference (Figure S4). \(\Delta k \) is the wavevector mismatch for SHG, which can be obtained from the light wavelength (\(\lambda \)) and refractive index (\(n \)) of fundamental (\(\omega \)) and second harmonic (\(2\omega \)) waves. The speed of light and the dielectric constant in vacuum are denoted by \(c \) and \(\varepsilon_0 \), respectively.

Then an optical transmission geometry (Figure 4a) was utilized to systematically measure the SHG response of the as-prepared rBN films with 800 nm femtosecond pulsed laser excitation (the excitation wavelength was fixed at 800 nm if not specified). As shown in Figure 4c, the SHG signal exhibited a quadratic dependence on thickness when rBN films were negligibly thin (\(\Delta k \cdot T \rightarrow 0 \)), as described in Equation (1). However, as the rBN crystal incessantly thickened, where \(\Delta k \cdot T \) cannot be ignored, the squared increase in SHG intensity was disrupted, and the signal transitioned to a sinusoidal response and even declined when the rBN thickness exceeded ~1.6 \(\mu \)m (Figure 4d). This optical response is referred to as the phase-mismatching effect. The underlying cause for this effect is the discrepancy in the refractive indices of the fundamental (\(n(\omega) \)) and second harmonic (\(n(2\omega) \)) waves propagating through the thick rBN layers,\(^{[43]} \) resulting in a wavevector mismatch, calculated as

\[
\Delta k = k(2\omega) - 2k(\omega) = \frac{4\pi}{\lambda(\omega)} \cdot (n(2\omega) - n(\omega))
\]

Under the condition of \(\Delta k \cdot T = \pi \), the SHG intensity reached its maximum (~10\(^7\) times higher than that of the monolayer, as determined in Figure 4e). The featural coherence thickness (\(l_c \)) can be derived as

\[
l_c = \frac{\lambda(\omega)}{4[n(\omega) - n(2\omega)]} \sim 1.6 \mu m,
\]

which was well consistent with our experimental results.

Besides that, the SHG conversion efficiency, denoted by \(\eta_{SHG} \propto I(2\omega)/I(\omega) \), is directly proportional to the pump intensity \(I(\omega) \), as determined by Equation (1). It implies that one can continuously enhance the conversion efficiency by employing higher-power excitation until the materials are damaged by the pump laser (at which point the maximum tolerable laser power is referred to as the damage threshold). Benefiting from the large bandgap, rBN crystal potentially avoids resonant excitation of states at the band edge and shallow defects, resulting in high laser-induced damage threshold and high transparency of the generated second harmonic waves. Figure 4f presented the excitation-power-dependent SHG response, indicating a damage threshold of ~200 GW/cm\(^2\) at the thickness of \(l_c \) (Supplementary Note 2), which was similar with that of the monolayer. Under the highest-power circularly-polarized pump, a conversion efficiency up to ~1% was achieved, which closely aligned with the theoretical estimation of ~1.7%, with the visible SHG...
output of different wavelengths (Figure 4g and Figure S5). Note that a 1,064 nm fundamental wavelength (generating the second harmonic signals at 532 nm) was specifically chosen for better visualization in Figure 4g. To the best of our knowledge, this represents a recorded value that has ever been reported within the entire 2D material family\(^{[44-52]}\) (Figure 4h, and Table S1).

To further enhance the SHG response of rBN crystalline films, optical phase-matching is a prerequisite for balancing out the wavevector mismatch. In reference to the mature design of conventional nonlinear optical crystals, quasi-phase-matching is one of the widely used routes\(^{[53-57]}\). Considering its van der Waals interlayer interaction and atomically flat interfaces, rBN can be artificially stacked to periodically assign the SHG polarization of each film, achieving the quasi-phase-matching for the nearly quadratic augmentation of SHG intensity with the increased number of component films (Supplementary Note 3). Furthermore, we fabricated a twist rBN crystal through a well-controlled dry-transfer technique and then measured the SHG intensities of stacked rBN structures (Figure S6). The SHG signals in the 180°-stacked two-piece and three-piece rBN films (with thickness of ~1.6 μm for each film) were enhanced by 3.7 and 8.5 times, respectively, as expected. In contrast, the intensity of the 0°-stacked rBN structures showed the sinusoidal oscillation. Our experimental findings are consistent with the theoretical calculations, providing strong demonstration for the QPM process. As a result, through rational design and atomic manufacturing of rBN crystalline films, it is highly desired to reach the practical criterion of ultrathin nonlinear optical crystal.

3. Conclusion

In this study, we propose a stacking-controlled continuous precipitation strategy to successfully synthesize large-scale rBN crystalline films on single-crystal FeNi vicinal surfaces. The parallel ABC stacking sequence between adjacent layers is unambiguously demonstrated through planar and cross-sectional characterizations. This well-ordered stacking structure ensures the coherent superposition of the SHG polarization of each BN layer, and gives rise to the giant nonlinear frequency conversion efficiency up to 1% within ~1.6 μm. This work opens a route for the development of 2D-material-based miniaturized high-power lasers and compact quantum photonic devices in the future.

4. Experimental section
Annealing of single-crystal FeNi v-(111) foils: A commercial polycrystalline Permalloy foil (60 wt.% Fe, #4J36, Xi’an Gangyan Special Alloy Co. Ltd) was placed on an Al₂O₃ plate and loaded into a tube furnace with a chamber diameter of 6 cm (Hefei Kejing Co. Ltd). The foil was heated to 1,450 °C near the molten point in 3 hours and kept for 10 hours to obtain the single-crystal FeNi v-(111) foil. The system was kept at atmospheric pressure with a mixed gas flow (500 sccm Ar and 50 sccm H₂; sccm means standard cubic centimeter per minute) during the whole process.

Growth of rBN crystalline films: The pre-annealed FeNi v-(111) foil was tightly placed onto the hot-pressed BN paper (90 μm thick, Guangdong Suqun New Material Co. Ltd) on the Al₂O₃ plate and then loaded into the tube furnace. The furnace was heated to 1,250 °C in 2 hours and maintained for 2-60 hours at atmospheric pressure under the mixed flux of N₂ (500 sccm), Ar (100 sccm) and H₂ (50 sccm) to grow rBN crystalline films with different thicknesses. After growth, the system was naturally cooled down to room temperature.

Transfer of rBN crystalline films: A typical wet method was used for transferring rBN films for characterization, in which rBN/FeNi samples were firstly floated on the surface of FeCl₃ solution for 10 hours to remove the Fe and Ni, then rinsed with deionized water several times and finally placed onto target substrates. Besides, the rBN flakes can be directly exfoliated from the surface of rBN/FeNi samples and released onto substrates using the Scotch tape method. The stacked rBN films for quasi-phase-matching measurements were fabricated through a well-controlled dry-transfer technique. A polypropylene carbonate (PPC) film was firstly spin-coated on a polydimethylsiloxane (PDMS) stamp to pick up one rBN film. Then the system was accurately rotated with 0° (for phase-mismatching) or 180° (for quasi-phase-matching), which was controlled by a commercial two-dimensional-material rotary transfer stage (JOOIN Technology, 2DT-7-300). The rBN/PPC film was further stacked onto another rBN on the fused silica and detached from the stamp by heating it at 130 °C. After completely releasing, the stacked rBN films were annealed at 500 °C for 8 hours under a low-pressure condition (<200 Pa) with Ar (500 sccm) and H₂ (50 sccm), in order to remove the PPC residue and exclude the interlayer air bubbles.

SHG measurements: A titanium–sapphire oscillator (Coherent Mira-HP, ∼130 fs, 76MHz) equipped with an optical parametric oscillator (Coherent Mira-OPO-X, 200 fs, 76 MHz) was used for SHG
measurements (if not specified, the wavelength of the fundamental wave was fixed at 800nm). The excitation laser was focused on the sample with signal collected in an objective-sample-objective confocal transmission configuration. Subsequently, a spectrometer (Princeton SP2500) with a silicon charge coupled device camera was used to record the signal. In order to determine the nonlinear coefficient of rBN, the SHG spectra of commercial z-cut LiNbO$_3$ film (thickness of 300 nm) and rBN film (thickness of 730 nm) were simultaneously measured under the 1,064 nm laser excitation. To accurately obtain the SHG conversion efficiency, we measured the power of the excitation light ($P(\omega)$) and signal light ($P(2\omega)$) separately. Then the SHG conversion efficiency was calculated as $\eta_{\text{SHG}} = \frac{P(2\omega)}{P(\omega)}$, taking the transmission loss into account. Since $P = I \cdot A$, where A represents the spot area, the efficiency can be also expressed as $I(2\omega)/I(\omega)$. Polarized SHG pattern measurements were performed by adding a half-wave plate in front of the focusing objective in a reflection geometry.

SHG simulations: The NumPy scientific computing package in Spyder (Python 3.7) was used for all SHG simulations. To describe the interaction between the fundamental and SHG signals, nonlinear coupled-wave equations were employed. And the refractive index of BN at different wavelengths was obtained from the Sellmeier equation.

Characterizations: Raman spectrum was obtained at room temperature using SmartRaman confocal-micro-Raman module (Institute of Semiconductors, Chinese Academy of Sciences) with an incident light wavelength of 532 nm. UV-vis spectral measurement was performed using a Varian Cary 5000 NIR-vis-UV spectrophotometer. XRD 2θ-scan and φ-scan measurements were performed using a Bruker D8 Discover system and a X’Pert3 MRD system, respectively. XPS was performed using Axis Ultra Imaging X-ray photoelectron spectrometer. AFM mappings were obtained by a Bruker Dimensional ICON system at ambient atmosphere. SEM and EDS images were collected by an FEI Nova NanoSEM 430 scanning electron microscope equipped with Ultim max 100 nanoprobe. EBSD mappings were performed using a PHI 710 scanning Auger nanoprobe. HRTEM, SAED and STEM experiments were obtained in FEI Titan Themis G2 300 operated at 300 kV.

Acknowledgements

J. Qi, Chenjun Ma, Q. Guo and Chaojie Ma contributed equally to this work. This work was supported by the National Key R&D Program of China (2022YFA1403500 and 2022YFA1405600), National Natural Science Foundation of China (52025023, 51991342, 52021006, 92163206, 11888101, 15214095, ja, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/adma.202303122 by Peking University Health. Wiley Online Library on 04/06/2023. For use subject to the terms and conditions at https://onlinelibrary.wiley.com/doi/10.1002/adma.202303122. This article is protected by copyright. All rights reserved.
T2188101, 12104018), Guangdong Major Project of Basic and Applied Basic Research (2021B0301030002), the Strategic Priority Research Program of Chinese Academy of Sciences (XDB33000000).

Competing interests
There are no conflicts to declare.

Supporting Information
Supporting Information is available from the Wiley Online Library.

References

This article is protected by copyright. All rights reserved.

This article is protected by copyright. All rights reserved.

This article is protected by copyright. All rights reserved.

Figures and captions
Figure 1. Characterizations of single-crystal FeNi v-(111) alloy. a) Schematic of the seeded abnormal grain growth of FeNi v-(111) single crystal by a high-temperature annealing method. b) Photograph of the single-crystal FeNi v-(111) foil. c,d) In-plane EDS mappings of Fe (c) and Ni (d), respectively, indicating the even distribution of two compositions. e) AFM mapping of the area with parallel steps on as-obtained FeNi v-(111) surface. f,g) EBSD IPF mappings along the Z (f) and X (g) directions, respectively. The two images are of the same size. h,i) XRD 2θ-scan pattern (h) and φ-scan data corresponding to FeNi (100) (i), respectively, confirming the single-crystal nature of the FeNi v-(111) foil without in-plane rotation.
Figure 2. Growth and characterizations of rBN crystalline films. a) Schematic of the stacking-controlled continuous precipitation strategy, in which the orange and blue balls represent the boron and nitrogen atoms, respectively, and SC means single-crystal. b) Photograph of an as-grown rBN film on the FeNi v-(111) single crystal. c,d) Cross-sectional (c) and planar (d) SEM images of the rBN film with thickness of 1.2 μm, respectively. e) Photograph of a transferred rBN film on a fused silica wafer. f) UV-vis absorption spectrum of the transferred rBN film, showing an optical bandgap of ~5.8 eV. g) XRD 2θ-scan data of the transferred rBN film, indicating that the rBN layers are well aligned along the out-of-plane direction. h) Raman spectrum of the rBN film. The FWHM of the Raman E_{2g} mode is measured to be ~9.0 cm^{-1}.
Figure 3. Confirmation of interlayer stacking configuration for the crystalline rBN film. a) Schematics of the stacking configuration of rBN (left panel) and hBN (right panel). b) Polarized SHG patterns for as-grown rBN and commercial hBN flakes. The two exfoliated flakes have the similar thickness of ~40 nm, while the SHG intensity of rBN is five orders of magnitude stronger. c) XRD \(\varphi \)-scan pattern of rBN film. The three main peaks at an identical interval of exactly 120° corresponding to rBN (102) indicate the threefold rotation symmetry of the rBN crystalline film. d,e) Planar HRTEM image (d) and the corresponding SAED pattern (e) of the rBN, respectively. The same triangular lattice contrast is visualized, and the lattice constant along \(a \)-axis is measured as 0.252 nm in (d). The orange line in (e) is the intensity profile. The result that the ratio of the first-order to second-order diffraction spots is almost zero confirms the ABC stacking sequence of the crystalline rBN film. f) Cross-sectional atomic-resolution STEM image of the rBN film with an interlayer distance of 0.333 nm. g) High-resolution XRD 2\(\theta \)-scan spectra of two kinds of BN film. The smaller peak position of as-grown rBN film shows a larger interlayer distance (about 0.12%) than that of the hBN counterpart.
Figure 4. High-efficiency SHG in the rBN crystalline films. a) Schematic illustration of the SHG response of rBN films in an optical transmission geometry. b) Detailed schematics of the enhanced and vanishing SHG in rBN and hBN films, respectively. The black arrow represents the in-plane second-order nonlinear polarization ($P(2\omega)$). And $I(2\omega)$ means the SHG intensity. Aligned $P(2\omega)$ in rBN accounts for the coherently enhanced SHG while the antiparallel $P(2\omega)$ in hBN makes the SHG signals cancel with each other. c,d) Thickness-dependent SHG of rBN films, where dots and curves are the experimental and simulated results, respectively. The SHG intensity shows an expected quadratic law within a thin thickness of ~100 nm (c) and undergoes a sinusoidal response when the thickness exceeds the coherence length of l_c (d). e) SHG spectra of the BN monolayer and rBN film (~1.6 μm thick) under 800 nm excitation. The SHG intensity of rBN can be dramatically enhanced by approximate 10^7 times compared with that of the monolayer. f) Excitation power dependence of SHG for monolayer BN and rBN films. The maximum SHG conversion efficiency of the rBN film is determined to be ~1% for with a coherence

This article is protected by copyright. All rights reserved.
thickness of 1.6 μm. g) Demonstration of SHG from our rBN nonlinear crystal. Here, the SHG wavelength at 532 nm (with an excitation wavelength of 1,064 nm) is chosen specifically for better visualization. h) Comparison of the SHG conversion efficiency of rBN crystalline films to some most representative 2D nonlinear optical crystals reported recently, including quantum dots coated MoS$_2$ (QD/MoS$_2$)$^{[16]}$, 3R MoS$_2$ bulk$^{[51]}$, ferroelectric NbO$_2$ and its wrinkled area (W. NbO$_2$)$^{[50]}$.

Table of Contents Entry

A stacking-controlled continuous precipitation strategy is proposed to synthesize uniform rBN crystalline films (lateral size of 2×1 cm2, thickness of >1 μm) on the vicinal FeNi (111) single crystal. The rBN films with parallel stacked layers exhibit ultrahigh nonlinear optical response with the frequency conversion efficiency of 1% (the highest value reported in the whole two-dimensional material family).

Jiajie Qi, Chenjun Ma, Quanlin Guo, Chaojie Ma, Zhibin Zhang, Fang Liu, Xuping Shi, Li Wang, Mingshan Xue, Muhong Wu, Peng Gao, Hao Hong, Xinqiang Wang, Enge Wang, Can Liu*, and Kaihui Liu*, Stacking-Controlled Growth of rBN Crystalline Films with High Nonlinear Optical Conversion Efficiency up to 1%